【摘要】不等式恒成立、能成立、恰成立問題分析一、不等式恒成立問題問題引入:已知不等式對恒成立,其中,求實數(shù)的取值范圍。分析:思路(1)通過化歸最值,直接求函數(shù)的最小值解決,即。思路(2)通過分離變量,轉(zhuǎn)化到解決,即。思路(3)通過數(shù)形結(jié)合,化歸到作圖解決,即圖像在的上方。小結(jié):不等式恒成立問題的處理方法1、轉(zhuǎn)換求函數(shù)的最值:(1)若不等式在區(qū)間D上恒成立,則等價于
2025-03-24 05:47
【摘要】250000001210300000000xyxyxy?????????????《二元一次不等式(組)與平面區(qū)域》教學(xué)過程教學(xué)基本流程復(fù)習(xí)回顧上節(jié)課從實際問題中提取不等關(guān)系的內(nèi)容,與已有知識的聯(lián)系提出問題,激發(fā)求知欲組織學(xué)生自主探索,獲得二元一次不等式的定義,并探索出
2024-11-19 16:13
【摘要】不等式恒成立問題的處理恒成立問題在解題過程中大致可分為以下幾種類型:①一次函數(shù)型;②二次函數(shù)型;③其他類不等式恒成立一、一次函數(shù)型給定一次函數(shù)y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]內(nèi)恒有f(x)0,則根據(jù)函數(shù)的圖象(直線)可得上述結(jié)論等價于?????0)(0)(nfmf同理,若在[m,n]內(nèi)恒有f(x
2025-01-09 10:08
【摘要】二元一次不等式表示平面區(qū)域1.教材的重點、難點和關(guān)鍵重點:二元一次不等式表示平面區(qū)域。難點:準(zhǔn)確理解和判斷二元一次不等式所表示的平面區(qū)域在直線的哪一側(cè)。關(guān)鍵:用數(shù)形結(jié)合的思想方法,幫助學(xué)生用集合的觀點和語言來分析和描述幾何圖形,用“代點法”并結(jié)合多媒體課件動態(tài)演示突破難點。1、知識目標(biāo):二元一次不等式(組)
2024-11-18 13:30
【摘要】含參數(shù)的一元二次不等式解法命題人:徐月玲2016年10月【學(xué)習(xí)目標(biāo)】,并能解決一些實際問題。經(jīng)歷從實際情景中抽象出一元二次不等式模型的過程.、方程的聯(lián)系,會解一元二次不等式。,體會成功的快樂。【學(xué)習(xí)重點】從實際問題中抽象出一元二次不等式模型,圍繞一元二次不等式的解法展開,突出數(shù)形結(jié)合的思想?!緦W(xué)習(xí)難點】理解二次函數(shù)、一元二次方程與一元二次不等式解集的關(guān)系
2025-06-25 17:04
【摘要】1.1正弦定理(教學(xué)設(shè)計)教學(xué)目標(biāo)1.知識與技能:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題。2.過程與方法:讓學(xué)生從已有的幾何知識出發(fā),共同探究在任意三角形中,邊與其對角的關(guān)系,引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用
2024-11-28 13:35
【摘要】第一章解斜三角形1.1.1正弦定理(一)教學(xué)目標(biāo)1.知識與技能:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理與三角形內(nèi)角和定理解斜三角形中的一類簡單問題2.過程與方法:讓學(xué)生從已有的幾何知識出發(fā),共同探究在任意三角形中,邊與其對角的關(guān)系,引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出
【摘要】第一講不等式解法一、含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型。∴-4x-24,不等號各端加2,得-2x6。∴不等式解集是{x|-2
2025-06-19 08:38
【摘要】第三章不等式復(fù)習(xí)一、內(nèi)容組成---前后移動、左右拆分減輕負(fù)擔(dān),控制難度、螺旋上升意圖:二、特點分析---體現(xiàn)優(yōu)化、突出工具1.內(nèi)容安排上的特點把簡單的線性規(guī)劃和不等式放在一起,將線性規(guī)劃問題作為不等式來處理,突出了不等式的幾何意義以及在解決優(yōu)化問題中的作用,為理解不等式的本質(zhì),體現(xiàn)優(yōu)化思想奠定了基礎(chǔ)。
2024-11-12 19:05
【摘要】一元二次不等式的應(yīng)用復(fù)習(xí)一元二次方程方程有兩個不等的根0??044)2(22????abacabxa(1)公式法X=方程有一個根0??方程沒有根0??求根的方法:(2)配方法,化為頂點式(3)十字相乘法復(fù)習(xí)一元二次方程:ax2+bx+c=0(a≠0)的根例:求0322???x
2024-11-17 15:05
【摘要】第三章不等式復(fù)習(xí)一、內(nèi)容組成-前后移動、左右拆分減輕負(fù)擔(dān),控制難度、螺旋上升意圖:二、特點分析-體現(xiàn)優(yōu)化、突出工具1.內(nèi)容安排上的特點把簡單的線性規(guī)劃和不等式放在一起,將線性規(guī)劃問題作為不等式來處理,突出了不等式的幾何意義以及在解決優(yōu)化問題中的作用,為理解不等式的本質(zhì),體現(xiàn)優(yōu)化思想奠定了基礎(chǔ)。
2025-08-16 01:47
【摘要】一元二次不等式及其解法考察下面含未知數(shù)x的不等式:15x2+30x-10和3x2+6x-1≤0.這兩個不等式有兩個共同特點:(1)含有一個未知數(shù)x;(2)未知數(shù)的最高次數(shù)為2.一般地,含有一個未知數(shù),且未知數(shù)的最高次數(shù)為2的整式不等式
2025-08-16 02:12