【摘要】第2章——橢圓的幾何性質(zhì)(二)[學(xué)習(xí)目標(biāo)]..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測(cè)當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接]已知直線和橢圓的方程,怎樣判斷直線不橢圓的位置關(guān)系?答:直線不橢圓的位置關(guān)系
2024-11-17 23:13
【摘要】高二數(shù)學(xué)備課組的絕對(duì)值平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差等于常數(shù)的點(diǎn)的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡(jiǎn)單幾何性質(zhì)》教學(xué)目標(biāo)?知識(shí)與技能目標(biāo)?了解平面解析幾何研究的主要問(wèn)題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過(guò)方程,研究曲線的性質(zhì).理解雙曲線的范圍、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會(huì)用雙曲線的定義解決實(shí)際
2024-11-30 12:26
【摘要】求曲線方程(1)曲線上點(diǎn)的坐標(biāo)都是方程F(x,y)=0的解;(2)以方程F(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上.曲線C叫做方程F(x,y)=0的曲線,方程F(x,y)=0叫做曲線C的方程.求曲線方程的步驟,設(shè)動(dòng)點(diǎn)M(x,y);p的點(diǎn)M的集合P={M|p(M)};p
2024-11-18 08:46
【摘要】2020/12/25§(一)2020/12/25復(fù)習(xí)思考?、標(biāo)準(zhǔn)方程是什么??平面上到兩個(gè)定點(diǎn)的距離的和(2a)等于定長(zhǎng)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2c)。)0(12222????bab
【摘要】知識(shí)指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標(biāo)準(zhǔn)方程的焦點(diǎn)在哪個(gè)軸上的準(zhǔn)則:焦點(diǎn)在分母大的那個(gè)軸上注3:橢圓上到焦點(diǎn)的距離最大和最小的點(diǎn)是橢圓長(zhǎng)軸的兩個(gè)端點(diǎn)知識(shí)指要橢圓1、橢圓第
2025-09-25 20:45
【摘要】圓錐曲線 圓錐曲線第第一二定定義義標(biāo)準(zhǔn)方程的關(guān)系橢圓性質(zhì)對(duì)稱性焦點(diǎn)頂點(diǎn)離心率準(zhǔn)線焦半徑直線與橢圓的位置關(guān)系相交相切相離第第一二定定義義標(biāo)準(zhǔn)方程的關(guān)系雙曲線性質(zhì)對(duì)稱性焦點(diǎn)頂點(diǎn)離心率準(zhǔn)線焦半徑直線與雙曲線的位置關(guān)系相交相切相離漸近線
2025-06-07 23:21
【摘要】常見(jiàn)函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-17 23:31
【摘要】江蘇省建陵高級(jí)中學(xué)2020-2020學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)(2)導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、會(huì)用雙曲線性質(zhì)求雙曲線的基本量;2、理解雙曲線的離心率與漸近線的關(guān)系【課前預(yù)習(xí)】1、若焦點(diǎn)坐標(biāo)是(5,0),(-5,0),漸近線方程為43yx??,則雙曲線的方程為_(kāi)_________2、雙曲線
2024-11-20 00:31
【摘要】第二章圓錐曲線與方程第8課時(shí)雙曲線的幾何性質(zhì)(1)教學(xué)目標(biāo):1.熟練掌握雙曲線的范圍,對(duì)稱性,頂點(diǎn)等簡(jiǎn)單幾何性質(zhì);2.掌握標(biāo)準(zhǔn)方程中cba,,的幾何意義,以及ecba,,,的相互關(guān)系;3.了解坐標(biāo)法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法.教學(xué)重點(diǎn):雙曲線的幾何性質(zhì)教學(xué)難點(diǎn):
2024-11-19 17:31
【摘要】1、求函數(shù)在某點(diǎn)的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導(dǎo)數(shù)主要有哪些方面的應(yīng)用?應(yīng)用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導(dǎo)數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【摘要】拋物線的幾何性質(zhì)前面我們已學(xué)過(guò)橢圓與雙曲線的幾何性質(zhì),它們都是通過(guò)標(biāo)準(zhǔn)方程的形式研究的,現(xiàn)在請(qǐng)大家想想拋物線的標(biāo)準(zhǔn)方程、圖形、焦點(diǎn)及準(zhǔn)線是什么?一、復(fù)習(xí)回顧:圖形方程焦點(diǎn)準(zhǔn)線lFyxOlFyxOlFyxO