【摘要】《線性代數(shù)》期終試卷3(3學(xué)時(shí))一、填空題(15’):1.設(shè)向量組,它的秩是(),一個(gè)最大線性無(wú)關(guān)組是().2.已知矩陣和相似,則x=().3.設(shè)是秩為的矩
2025-01-09 10:36
【摘要】第二章矩陣及其運(yùn)算§1矩陣???????????????mn2m1mn22221n11211aaaaaaaaaA???????),(ija也可以記成行矩陣(行向量),列矩陣(列向量),n階矩陣(n階方陣)
2025-10-10 01:08
【摘要】線線性性代代數(shù)數(shù)?LinearAlgebra第二章行列式1第二章行列式行列式(Determinant)是線性代數(shù)中的一個(gè)最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應(yīng)用于數(shù)學(xué)、物理、力學(xué)以及工程技術(shù)等領(lǐng)域.2第二章行
2025-01-17 08:02
【摘要】第一篇:線性代數(shù)復(fù)習(xí)要點(diǎn) “線性代數(shù)”主要題型(以第三版的編號(hào)為準(zhǔn)) (注意:本復(fù)習(xí)要點(diǎn)所涉及的題目與考試無(wú)關(guān)) 一、具體內(nèi)容 第一章、行列式: 、四階或者五階行列式的計(jì)算。 3、例4,第...
2025-10-08 18:50
【摘要】第一篇:線性代數(shù)概念總結(jié) 每一個(gè)m×n矩陣總可經(jīng)過(guò)有限次初等行變換化成行階梯陣與行簡(jiǎn)化階梯陣,且行階梯陣中的非零行數(shù)是唯一確定的,行簡(jiǎn)化階梯陣也是唯一確定的。 初等矩陣都是可逆的。且初等矩陣的逆矩...
2024-11-05 02:09
【摘要】第一篇:08線性代數(shù)試題 08-09學(xué)年線性代數(shù)試題 一、填空題(每小題2分,共10分) 1、設(shè)a1,a2,a3均為3維列向量,記B=(a1,2a2+3a1,4a3-a2+a1),若|A|=2,...
2024-11-15 07:12
【摘要】第一篇:自考線性代數(shù)試題 全國(guó)2010年10月高等教育自學(xué)考試 線性代數(shù)(經(jīng)管類)試題課程代碼:04184說(shuō)明:在本卷中,AT表示矩陣A的轉(zhuǎn)置矩陣,A*表示矩陣A的伴隨矩陣,E是單位矩陣,|A|表...
2024-11-15 22:57
【摘要】線性代數(shù)湖南工業(yè)大學(xué)理學(xué)院主講教師:段向陽(yáng)月年92022第一章第二章第三章第四章第五章第六章第七章答案教學(xué)安排?課程學(xué)時(shí):40學(xué)時(shí)?課程性質(zhì):基礎(chǔ)理論課?考
2025-02-19 06:24
【摘要】線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院一、行列式的引入二、n階行列式的定義四、小結(jié)思考題§n階行列式的概念三、排列與逆序(另一表達(dá)形式)上頁(yè)下頁(yè)返回線性代數(shù)第一章版權(quán)所有:山東理工大學(xué)理學(xué)院用消元法解二元線性方程組111122121
【摘要】《線性代數(shù)》期終試卷2(2學(xué)時(shí))本試卷共八大題一、是非題(判別下列命題是否正確,正確的在括號(hào)內(nèi)打√,錯(cuò)誤的在括號(hào)內(nèi)打×;每小題2分,滿分20分):1.若階方陣的秩,則其伴隨陣。()2.若矩陣和矩陣滿
【摘要】.行列式的定義和性質(zhì)1.余子式和代數(shù)余子式的定義例1行列式第二行第一列元素的代數(shù)余子式( ?。〢. B.C. D.測(cè)試點(diǎn)余子式和代數(shù)余子式的概念解析,答案B2.行列式按一行或一列展開(kāi)的公式1)2)例2設(shè)某階行列式的第二行元素分別為對(duì)應(yīng)的余子式分別為則此行列式的值為.測(cè)試點(diǎn)行列式按
2025-03-23 12:11
【摘要】1/35第一章行列式1.逆序數(shù)定義n個(gè)互不相等的正整數(shù)任意一種排列為:i1i2215。215。215。in,規(guī)定由小到大為標(biāo)準(zhǔn)次序,當(dāng)某兩個(gè)元素的先后次序與標(biāo)準(zhǔn)次序不同時(shí),就說(shuō)有一個(gè)逆序數(shù),該排列全部逆序數(shù)的總合用t數(shù)字的個(gè)數(shù)之和。性質(zhì)一個(gè)排列中任意兩個(gè)元素對(duì)換,排列改變奇偶性,即t2證明如下:設(shè)排列為a1Lalab1Lbmbc1L,作m次相鄰對(duì)換
2025-03-23 12:03