【摘要】2022屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設(shè)點,列式,化簡,證明五個步驟,最后的證明可以省
2025-07-24 10:09
【摘要】二 圓錐曲線的參數(shù)方程[學(xué)習(xí)目標(biāo)].、拋物線的參數(shù)方程.、有關(guān)點的軌跡問題.[知識鏈接],參數(shù)φ是OM的旋轉(zhuǎn)角嗎?提示 橢圓的參數(shù)方程(φ為參數(shù))中的參數(shù)φ不是動點M(x,y)的旋轉(zhuǎn)角,它是點M所對應(yīng)的圓的半徑OA(或OB)的旋轉(zhuǎn)角,稱為離心角,不是OM的旋轉(zhuǎn)角.,參數(shù)φ的三角函數(shù)secφ的意義是什么?提示 secφ=,其中φ∈[0,2π)且φ≠,φ≠
2025-08-05 04:45
【摘要】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個動點到兩個定點、的距離之和等于常數(shù),這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點為a、b,焦點為c)(1)當(dāng)焦點在軸上時,橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點
2025-05-31 08:15
【摘要】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進(jìn)行討論)
2025-03-25 00:04
【摘要】金太陽新課標(biāo)資源網(wǎng)圓錐曲線與方程測試題一、選擇題(本大題共12小題,第小題5分,共60分.在每小題給出的四個選項中,只有一項符是合題目要求的.)1.若焦點在x軸上的橢圓的離心率為,則n=()A.B.C.D.(a0,mb0)的離心率互為倒數(shù),那么以a、b、m為邊
2025-07-23 20:57
【摘要】《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁例2)如圖,在圓上任取一點P,過點P作X軸的垂線段PD,D為垂足.當(dāng)點P在圓上運動時,線段PD的中點M的軌跡是什么?變式1:設(shè)點P是圓上的任一點,定點D的坐標(biāo)為(8,0).當(dāng)點P在圓上運動時,求線段PD的中點M的軌跡方程.解:設(shè)點M的坐標(biāo)為,點P的坐標(biāo)為,則,.即,.
2025-07-25 23:55
【摘要】圓錐曲線?解析幾何是在坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點、用方程表示點的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進(jìn)一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學(xué)學(xué)科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學(xué)生已掌握平面幾何知識與平面直角坐標(biāo)系、平面向量、兩點距離公式及基本初等函數(shù)、直線與圓的方程等知識的基礎(chǔ)上
2025-11-12 02:39
【摘要】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個定點(焦點F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點的軌跡。3.FLxLFxFxL當(dāng)0e1時,方程表示橢圓,F(xiàn)是左焦點,l是左準(zhǔn)線。當(dāng)1e時,方程表示雙曲線,F(xiàn)
2025-08-05 04:36
【摘要】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計設(shè)計者姓名郭曉泉設(shè)計者單位華亭縣第二中學(xué)
2025-05-12 01:30
【摘要】第二章圓錐曲線與方程一、授課課題:§橢圓二、教學(xué)目標(biāo)(三維目標(biāo)):1、知識與技能:理解橢圓的概念,掌握橢圓的定義、會用橢圓的定義解決實際問題;理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程及化簡無理方程的常用的方法;了解求橢圓的動點的伴隨點的軌跡方程的一般方法.2、過程與方法:進(jìn)一步培養(yǎng)學(xué)生能用解析法研究幾何問題的能力,滲透數(shù)形結(jié)合思想,注意培養(yǎng)學(xué)生觀察問題、發(fā)現(xiàn)問
2025-04-17 08:07
【摘要】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【摘要】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2025-07-20 00:18