【摘要】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】課前小故事有一次,魯班的手不慎被一片小草葉子割破了,他發(fā)現(xiàn)小草葉子邊緣布滿了密集的小齒,于是產(chǎn)生聯(lián)想,根據(jù)小草的結(jié)構(gòu)發(fā)明了鋸子。聯(lián)想類比問題1:一輛勻速行駛的汽車在11:20距離溫嶺50千米,要在12:00到達溫嶺,問車速應滿足什么條件?思考比較從時間:以這個速度行駛50千米所用的時
2025-06-12 00:55
【摘要】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-13 23:45
【摘要】第九章不等式與不等式組不等式不等式及其解集車輛限速標志,會用不等式表示簡單的不等關(guān)系。。。自主學習1、用不等式表示下列關(guān)系:(1)m與1的差是非負數(shù),則列不等式為。(2)在期中考試中,劉西北同學
2025-06-12 14:07
【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】第1課時一次方程(組)及其應用第2課時一元二次方程及其應用第3課時分式方程及其應用第4課時一元一次不等式(組)及其應用第二單元方程(組)與不等式(組)第二單元方程(組)與不等式(組)第1課時一次方程(組)及其應用中考考點清單考點1一元一次
2024-11-24 15:38
【摘要】函數(shù)與不等式綜合測試題班級姓名得分一、選擇題(每小題5分,滿分60分),,則()A.B.C.D.:的否定是真命題,則()A.B.C.D.,則命題:“”是命題:“”成立的()
2025-03-24 12:15
【摘要】一、填空題(共14小題,每題2分,共28分)1.“x的一半與2的差不大于1?”所對應的不等式是.2.不等號填空:若ab0,則5a?5b?;a1b1;12?a12?b.3.當a時,1?a大于2.
2024-11-28 04:39
【摘要】2022年春人教版數(shù)學七年級下冊課件第九章不等式與不等式組不等式的性質(zhì)第2課時利用不等式的性質(zhì)解不等式第九章不等式與不等式組不等式知識管理學習指南歸類探究當堂測評分層作業(yè)不等式的性質(zhì)第2課時利用不等式
2025-06-19 12:14
【摘要】河南省泌陽縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時,axgxfaaxgxfaa時,axgxfxgxfxgxf
2025-05-09 00:31
2025-08-15 22:11
【摘要】高二數(shù)學競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點,都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2025-08-04 18:32