【摘要】第二章二次函數(shù)知識(shí)點(diǎn)1二次函數(shù)與一元二次方程的關(guān)系1.(陜西中考)下列關(guān)于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點(diǎn)的判斷,正確的是(D),且它位于y軸右側(cè),且它們均位于y軸左側(cè),且它們均位于y軸右側(cè)2.(孝感中考)如圖,拋物線y=ax2與直線y=b
2025-06-18 00:42
【摘要】二次函數(shù)的應(yīng)用第二章學(xué)習(xí)的目的在于應(yīng)用,日常生活中,工農(nóng)業(yè)生產(chǎn)及商業(yè)活動(dòng)中,方案的最優(yōu)化、最值問題,如盈利最大、用料最省、設(shè)計(jì)最佳等都與二次函數(shù)有關(guān)。一、根據(jù)已知函數(shù)的表達(dá)式解決實(shí)際問題:0xyhAB
2024-12-08 14:25
【摘要】九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)回顧與思考?定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù)。?圖象:是一條拋物線。?圖象的特點(diǎn):(1)有開口方向,開口大小。(2)有對(duì)稱軸。(3)有頂點(diǎn)(最低點(diǎn)或最高點(diǎn))。oxyoxy?二次函數(shù)
2024-11-30 08:16
【摘要】第26章二次函數(shù)本章復(fù)習(xí)課類型之一拋物線的頂點(diǎn)坐標(biāo)與對(duì)稱軸1.[2022·上海]下列對(duì)二次函數(shù)y=x2-x的圖象的描述,正確的是()A.開口向下B.對(duì)稱軸是y軸C.經(jīng)過原點(diǎn)D.在對(duì)稱軸右側(cè)部分是下降的C【解析】∵二次函數(shù)
2025-06-12 12:14
【摘要】第二章二次函數(shù)一、選擇題(每小題4分,共32分)(C)=2x+1=ax2-2x+1=x2+2=2x-1k為任意實(shí)數(shù),則拋物線y=-2(x-k)2+k的頂點(diǎn)在(A)y=x上y=-x上3.(寧夏中考)已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的
2025-06-18 00:27
【摘要】第二章時(shí)間:120分鐘滿分:120分一、精心選一選(每小題3分,共30分)1.已知拋物線y=ax2+bx+c的開口向上,頂點(diǎn)坐標(biāo)為(3,-2),那么該拋物線有(A)A.最小值-2B.最大值-2C.最小值3D.最大值32.如果將拋物線y=x2+2向下平移1個(gè)單位,那么
2024-11-28 01:28
【摘要】第二章二次函數(shù)一、選擇題(每小題4分,共32分)a萬元,經(jīng)過連續(xù)兩年的增長(zhǎng)達(dá)到了y萬元,如果每年增長(zhǎng)的百分率都是x,那么y與x的函數(shù)關(guān)系是(D)=x2+a=a(x-1)2=a(1-x)2=a(1+x)2:x3.243.253.26ax2+b
2025-06-18 00:40
【摘要】第二章二次函數(shù)一、選擇題1.拋物線y=-3x2+2x-l的圖象與坐標(biāo)軸的交點(diǎn)個(gè)數(shù)是()A.無交點(diǎn)B.1個(gè)C.2個(gè)D.3個(gè)2、拋物線y=-2x2-4x-5經(jīng)過平移后得到拋物線y=-2x2,平移方法是()A.向左平移1個(gè)單位,再向下平移3
2024-11-28 19:21
2025-06-17 23:44
【摘要】第1章 二次函數(shù)本章總結(jié)提升整合提升第1章 二次函數(shù)知識(shí)框架本章總結(jié)提升實(shí)際問題的答案實(shí)際問題二次函數(shù)y=ax2+bx+c利用二次函數(shù)的圖像及性質(zhì)求解圖象知識(shí)框架目標(biāo)歸納抽象性質(zhì)整合提升問題1 拋物線的平移拋物線y=ax2經(jīng)過怎樣的平移可以得到拋物線y=a(x-m)2+k?例1已知
2025-06-15 00:54
【摘要】北師大版九年級(jí)下冊(cè)數(shù)學(xué)20)yaxbxca????二次函數(shù)(24,)4acba?b頂點(diǎn)坐標(biāo)為(-2a244acba?①當(dāng)a0時(shí),y有最小值=②當(dāng)a0時(shí),y有最大值=244acba?二次函數(shù)的最值求法情境導(dǎo)入
2025-06-17 13:01
【摘要】北師大版九年級(jí)下冊(cè)數(shù)學(xué)情境導(dǎo)入某超市有一種商品,進(jìn)價(jià)為2元,據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是13元時(shí),平均每天銷售量是50件,而銷售價(jià)每降低1元,平均每天就可以多售出10件.若設(shè)降價(jià)后售價(jià)為x元,每天利潤為y元,則y與x之間的函數(shù)關(guān)系是怎樣的?本節(jié)目標(biāo)T恤衫銷售過程中最大利潤等問題的過程,體會(huì)二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型
2025-06-12 01:19