【摘要】§微分方程的基本概念一、微分方程的基本概念二、幾類簡單的微分方程可分離變量的微分方程齊次微分方程一階線性微分方程二階常系數(shù)線性微分方程微分方程、微分方程的解通解與特解、初始條件例1求過點(1,3)且切線斜率為2x的曲線方程。解:設(shè)所
2024-10-19 18:02
【摘要】福州大學(xué)1第五章微分方程模型傳染病模型經(jīng)濟增長模型正規(guī)戰(zhàn)與游擊戰(zhàn)藥物在體內(nèi)的分布與排除香煙過濾嘴的作用人口預(yù)測和控制煙霧的擴散與消失萬有引力定律的發(fā)現(xiàn)福州大學(xué)2動態(tài)模型?描述對象特征隨時間(空間
2025-08-22 09:05
【摘要】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標(biāo)4倍,且過(-1,3)點,求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導(dǎo)數(shù)的模型引例2(運動方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2024-10-04 15:15
【摘要】第九章微分方程一、教學(xué)目標(biāo)及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-06-24 15:07
【摘要】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應(yīng)給出的初始條件是().A.當(dāng)時,B.當(dāng)時,C.當(dāng)時,D.當(dāng)時,3.微分方程的一個解是().
2025-03-25 01:12
【摘要】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【摘要】2022/4/131高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院第7章微分方程問題的計算機求解?薛定宇、陳陽泉著《高等應(yīng)用數(shù)學(xué)問題的MATLAB求解》,清華大學(xué)出版社2022?CAI課件開發(fā):劉瑩瑩、薛定宇2022/4/132高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院主要
2025-03-22 04:31
【摘要】目錄上頁下頁返回結(jié)束微分方程課程的一個主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達(dá)出來,但對一般的微分方程是無法求解的,如對一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問題第二章
2024-12-08 09:04
【摘要】《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程《偏微分方程》第3章波動方程分析可得上述初值問題的形式解是:稱此式為d’Alembert(達(dá)朗貝爾)公式11(,)[()()]()22xatxatuxtxatxatydya???
2025-02-21 16:13
【摘要】微積分理論微分方程及其應(yīng)用微積分II微積分理論馮國臣2022/2/17例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得
2025-01-20 05:31
【摘要】機動目錄上頁下頁返回結(jié)束高階線性微分方程解的結(jié)構(gòu)第七節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第十二章n階線性微分方程的一般形式為方程的共性為二階線性微分方程.例1例2,)()()(xfyxqyxpy?
2025-05-10 16:10
【摘要】第九章常微分方程的數(shù)值解法 在自然科學(xué)的許多領(lǐng)域中,都會遇到常微分方程的求解問題。然而,我們知道,只有少數(shù)十分簡單的微分方程能夠用初等方法求得它們的解,多數(shù)情形只能利用近似方法求解。在常微分方程課中已經(jīng)講過的級數(shù)解法,逐步逼近法等就是近似解法。這些方法可以給出解的近似表達(dá)式,通常稱為近似解析方法。還有一類近似方法稱為數(shù)值方法,它可以給出解在一些離散點上的近似值。利用計算機解微分方程主要
2025-08-22 20:43