freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式(一)教案5則范文-文庫(kù)吧在線文庫(kù)

  

【正文】 一)自主探索計(jì)算:(1)(a+b)2 (2)(ab)2你能用文字?jǐn)⑹鲆陨系慕Y(jié)論嗎?(二)合作交流:你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。數(shù)形結(jié)合的數(shù)學(xué)思想和方法。2. 197 師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,:: =(100+2) =(2003) =100 +2 lOO 2+2, =200 2 2O0 3十3 ,=10000+400+4 =400001200+9 =10404 =38809 :1.(x3) x2.(2a+b )(2ab+ )師生共同分析:1中(x3) ,板書(shū)如下:解:1. (x3) x = x +6x+9x =6x+9師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,:分小組討論第(2),:2. (2a+b )(2ab+ )=[2a+(b )][2a(b )]=(2a) (b ) =4a (b3b+ )=4a b +3b三、試一試計(jì)算:1. (a+b+c)2. (a+b) 師生共同分析:對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,(a+b+c) =[a+(b+c)] 對(duì)于(2)可化為(a+b) =(a+b)(a+b) .學(xué)生動(dòng)筆:在練習(xí)本上解答。3教學(xué)重點(diǎn)完全平方公式的準(zhǔn)確應(yīng)用。兩數(shù)和的平方。④(3a2)2=。右邊都是二次三項(xiàng)式,其中第一、三項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的兩倍,兩者也僅一個(gè)符號(hào)不同。掌握運(yùn)用完全平方公式分解因式的方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀教師活動(dòng):學(xué)生活動(dòng)復(fù)習(xí)鞏固:上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請(qǐng)同學(xué)們先閱讀課本87—88頁(yè),看看你能有什么發(fā)現(xiàn)?新課講解:(投影)我們把形如a2+2ab+b2與a22ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。.2248。練習(xí):第88頁(yè)練一練第2題第四篇:完全平方公式教案學(xué)習(xí)周報(bào)專業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)完全平方公式在代數(shù)、幾何中的兩點(diǎn)運(yùn)用,在一些代數(shù)、幾何問(wèn)題中,還會(huì)利用其進(jìn)行解題,在公式的一些使用過(guò)程中,還結(jié)合了整體思考的數(shù)學(xué)思想,、例1 已知a2+b2=1,ab=分析:要求(a+b)4,直接求12,求(a+b),的值有一定的困難,因而可利用整體思想,設(shè)法求出(a+b)2,結(jié)合題目條件a2+b2=1,:把a(bǔ)b=a2ab+b2212=兩邊同時(shí)平方,得34又因?yàn)閍2+b2=1,所以2ab=a+2ab+b4222=1+491634 即(a+b)=74所以(a+b)=.22例3 已知x3x+1=0,求(1)x+1x2;(2)x+:觀察所求代數(shù)式的特征,x+21x2可由x++1=0求出代數(shù)式x+,:把x3x+1=0兩邊同時(shí)除以x,得x3+1x=0,即x+1x=+21x=3兩邊同時(shí)平方,得 1x+1x2x+2x=9,即 x+21x2=7學(xué)習(xí)周報(bào)專業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)再把x2+421x2=7兩邊同時(shí)平方,得 1x2x+2x+1x21x4=49,即x+441x144=47.=(1)x2+(2)x+=7;x二、利用完全平方式判斷三角形形狀例4 已知三角形的三邊a,b,c滿足a2+b2+c2abacbc=0,:判斷形狀的三角形一般都是特殊三角形,因而可把目標(biāo)定為證明邊相等,聯(lián)想到完全平方式的非負(fù)性,:由a2+b2+c2abacbc=0兩邊同時(shí)乘以2,整理可得(a22ab+b22)+(a22ac+c22)+(b22bc+c2)=0所以(ab)+(ac)+(bc)=02因?yàn)?ab)≥0,(ac)≥0,(bc)≥0 222所以(ab)=0,(ac)=0,(bc)=0 222所以a=b,a=c,b=c 即 a=b= 已知a,b,c是DABC的三邊長(zhǎng),且a+2b+c2b(a+c)=0,:與例4相類似,也是利用完全平方公式將條件進(jìn)行變形,:由a+2b+c2b(a+c)=0變形,得 222(a22ab+b22)+(b22bc+c2)=02所以(ab)+(bc)=0因?yàn)?ab)≥0,(bc)≥0 學(xué)習(xí)周報(bào)專業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)所以(ab)=0,(bc)=0 22所以a=b,b=c 即 a=b=c 第五篇:(一)教案完全平方公式一、基本訓(xùn)練,鞏固舊知:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的,即(a+b)(ab)=,這個(gè)公式叫做 (1)(m+5n)(m5n)(2)(3x1)(3x+1)(3)(y+3x)(3xy)(4)(2+ab)(2+ab)二、創(chuàng)設(shè)情境,總結(jié)公式1做一做 填空:(1)(a+b)(a–b)=(2)(a+b)2 =(3)(a–b)2 =根據(jù)上面式子填空:(1)a 2b 2 =(2)a2–2ab+b2=(3)a 2 +2ab+b2=結(jié)論:形如a 2 +2ab+b2與a 2–2ab+b 2 的式子稱為完全平方式. 口訣:首平方、尾平方,首尾相乘兩倍在中央;完全平方公式a 2 –2ab+b2 =(a–b)2a 2 +2ab+b2 =(a+b)2 2 辯一辯:下列哪些式子是完全平方式?如果是,就把它們進(jìn)行因式分解.(1)x 2–4y2(2)x 2 +4xy–4y 2(3)4m2 –6mn+9n 2(4)m2 +6mn+9n2三﹑合作探究:+14x+49(m+n)2 (m++6axy+3ay2n)+1246。③(n+1)2–n2活動(dòng)目的:通過(guò)學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.第九環(huán)節(jié):學(xué)生PK活動(dòng)內(nèi)容:每個(gè)學(xué)生各出五道完全平方公式的計(jì)算題給自己的同桌解答,比一比誰(shuí)的準(zhǔn)確性率高,速度快.活動(dòng)目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對(duì)完全平方公式的理解與應(yīng)用.第十環(huán)節(jié):學(xué)生反思活動(dòng)內(nèi)容:通過(guò)今天這堂課的學(xué)習(xí),你有哪些收獲?收獲1:認(rèn)識(shí)了完全平方公式,并能簡(jiǎn)單應(yīng)用。教學(xué)難點(diǎn):消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”。(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。嘗試用自己的語(yǔ)言敘述完全平方公式:完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。即∠1+∠2=90176。:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。四、再識(shí)完全平方公式活動(dòng)內(nèi)容:例1用完全平方公式計(jì)算:(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。二、情境引入活動(dòng)內(nèi)容:提出問(wèn)題:一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。⑥ (4x5y)2 =______________。(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、不等式、函數(shù)等進(jìn)行描述。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)2。五、作業(yè)把下列各式分解因式:1。(5)是完全平方式,1-a+a2/4=(1-a2)2。把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2。45x2因?yàn)槿钡谌糠帧?,所以x2+6x+9=(x+3) 。這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。2。使學(xué)生會(huì)分析和判斷一個(gè)多項(xiàng)式是否為完全平方式,初步掌握運(yùn)用完全平方式把多項(xiàng)式分解因式的方法;2。 (2)(x-1)2;(3)(a+b)2。三、課堂練習(xí)改錯(cuò)練習(xí)例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;第二步準(zhǔn)確代入公式;第三步化簡(jiǎn)。情感態(tài)度與價(jià)值觀對(duì)學(xué)生觀察能力、概括能力、語(yǔ)言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。第三篇:完全平方公式教案完全平方公式教案1一、教材分析本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.這里是對(duì)前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過(guò)觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:⑴ ; ⑵ 【點(diǎn)撥】展開(kāi)后的式子有三項(xiàng),.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)][(x-z)+y]2,再用完全平方公式計(jì)算; 思考⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號(hào):∵4+5+2與4+(5+2)的值相等。246。教學(xué)方法:探索討論、歸納總結(jié)。能力目標(biāo):經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感和推理能力;情感目標(biāo):在應(yīng)用公式時(shí)要注意符號(hào)和項(xiàng)數(shù),不要漏項(xiàng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。:2圖(1),可以看出大正方形的邊長(zhǎng)是a+b,它是由兩個(gè)小正方形和兩個(gè)矩形組成,?所以大正方形的面積等于這四個(gè)圖形的面積之和。4322有效訓(xùn)練:(1)(x+y)2(2)(13x)(3x1)2 22(3)(4)(2x+3y)(3x2y)二、小結(jié):完全平方公式的結(jié)構(gòu)特征公式的左邊是一個(gè)二項(xiàng)式的完全平方;右邊是三項(xiàng),其中有兩項(xiàng)是左邊二項(xiàng)式中每一項(xiàng)的平方、而另一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的2倍。學(xué)生在做
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1