【摘要】例1不等式|8-3x|>0的解集是[]答選C.例2絕對值大于2且不大于5的最小整數(shù)是[]A.3 B.2C.-2 D.-5分析列出不等式.解根據(jù)題意得2<|x|≤5.從而-5≤x<-2或2<x≤5,其中最小整數(shù)為-5,答選D.例
2025-06-19 08:47
【摘要】(1)包含關系①如果x∈A,則x∈B,則集合A是集合B的子集,記為AB或BA顯然AA,ΦA????(2)相等關系對于集合A、B,如果AB,同時BA,那么稱集合A等于集合B記作A=B??(3)真子集關系
2024-11-18 15:31
【摘要】高一年級數(shù)學第一章函數(shù)的概念課題:區(qū)間的概念問題提出1.什么叫函數(shù)?用什么符號表示函數(shù)?2.什么是函數(shù)的定義域?值域?4.上述集合還有更簡單的表示方法嗎?()1||fxx??的定義域、值域如何?分別怎樣表示?知識探究(一)思考
【摘要】課時作業(yè)(三十九)絕對值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應選B.2.設a,b為滿足ab<0的實
2025-08-05 15:29
【摘要】§初中我們學過哪些函數(shù)?)0(??kkxy正比例函數(shù):)0(??kxky反比例函數(shù):)0(???kbkxy一次函數(shù):)0(2????acbxaxy二次函數(shù):設在一個變化過程中有兩個變量x和y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說y是x的函數(shù).其中x叫自
2024-11-18 15:32
【摘要】弧度制(1)高一數(shù)學課件復習使角的頂點與原點重合,角的始邊與x軸正半軸重合,那么角的終邊(除端點外)在第幾象限,我們就說這個角是第幾象限角。所有與角α終邊相同的角,連同角α在內,可構成一個集合:{α+k·360°
【摘要】對于不等式大家并不陌生,我們已經會解一些簡單的不等式和證明一些不等式,如1.求解下列不等式:①23100xx???②25xx??02.設1??n,且,1?n求證:13?nnn?2.第一講不等式和絕對值不等式(一)
2025-07-24 06:56
【摘要】知識回顧揭示課題問題1實數(shù)與數(shù)軸上的點是如何對應的?問題2在數(shù)軸上表示出與實數(shù)-2、-1、0、2、4對應的點.問題3如何利用數(shù)軸上的點比較這五個數(shù)的大?。恐R回顧揭示課題實數(shù)和數(shù)軸上的點一一對應.數(shù)軸上的任意兩點中,右邊的點對應的實數(shù)比左邊的點對應的實數(shù)大
2024-11-17 23:29
【摘要】新疆和靜高級中學高三第一輪復習含絕對值不等式的解法新疆和靜高級中學1、絕對值的意義:其幾何意義是數(shù)軸的點A(a)離開原點的距離aOA?????????????????0,0,00,aaaaaa新疆和靜高級中學2、含有絕對值不等式的解法:
2024-11-19 08:50
【摘要】天星教育網版權所有典型例題一例1解不等式分析:解含有絕對值的不等式,通常是利用絕對值概念,將不等式中的絕對符號去掉,轉化成與之同解的不含絕對值的不等式(組),再去求解.去絕對值符號的關鍵是找零點(使絕對值等于零的那個數(shù)所對應的點),將數(shù)軸分成若干段,然后從左向右逐段討論.解:令,∴,令,∴,如圖所示.(1)當時原不等式化為∴與條件矛盾,無解.(2)
2025-06-07 20:21
【摘要】☆教學目標:,理解不等式基本性質的推導過程;;;?!罱虒W重點:定理1的證明及幾何意義?!罱虒W難點:換元思想的滲透?!罱虒W過程:一、引入:證明一個含有絕對值的不等式成立,除了要應用一般不等式的基本性質之外,經常還要用到關于絕對值的和、差、積、商的性質:(1)
2025-03-25 07:13
【摘要】典型例題含絕對值不等式的解法例1?解絕對值不等式|x+3||x-5|.解:由不等式|x+3||x-5|兩邊平方得|x+3|2|x-5|2,即(x+3)2(x-5)2,x1.∴?原不等式的解集為{x|x1}.評析?對于兩邊都含“單項”絕對值的不等式依據(jù)|x|2=x2,可在兩邊平方
2025-03-24 23:42
【摘要】一元二次不等式【三維目標】一、知識目標1.掌握一元二次不等式的解法2.能結合二次函數(shù)圖像理解一元二次不等式的解法二、能力目標培養(yǎng)數(shù)學運算能力,化歸能力,類比能力三、感情目標培養(yǎng)學生積極參與,合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學生感受數(shù)學學習的意義,改善學生的數(shù)學學習
2024-11-19 05:55
【摘要】本專題主要考查利用不等式性質判斷不等式或有關結論是否成立,再就是利用不等式性質,進行數(shù)值(或代數(shù)式)大小的比較,有時考查分類討論思想,常與函數(shù)、數(shù)列等知識綜合進行考查.[例1]若a、b是任意實數(shù),且a>b,則()A.a2>b2B.ab<
2025-05-25 18:12
【摘要】問題提出?列舉法,描述法?屬于、不屬于?(一)子集考察下列各組集合:A={1,3},B={1,3,5,6};C={x|x是長方形}D={x|x是平行四邊形}P={x|x是菱形}Q={x|x是正方形}思考:上述各組集合中,集合A中的元素與集合B中的