【摘要】離散型隨機變量的期望1、什么叫n次獨立重復(fù)試驗?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構(gòu)成,且每次試驗互相獨立完成,每次試驗的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
2024-11-18 15:23
【摘要】【與名師對話】2021-2021學(xué)年高中數(shù)學(xué)離散型隨機變量課時作業(yè)新人教A版選修2-3一、選擇題1.①某座大橋一天經(jīng)過的中華牌轎車的輛數(shù)為X;②某網(wǎng)站中歌曲《小蘋果》一天內(nèi)被點擊的次數(shù)為X;③一天內(nèi)的溫度為X;④射手對目標(biāo)進行射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,用X表示該射手在一次射擊中的得分.其中X是
2024-11-28 00:07
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)離散型隨機變量學(xué)案新人教A版選修2-3學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟?qū)W習(xí)目標(biāo):1、理解隨機變量及離散型隨機變量的含義;了解隨機變量與函數(shù)的區(qū)別和聯(lián)系;會用離散型隨機變量描述隨機現(xiàn)象。2、通過實例,理解隨機變量與離散性隨機變量的含義,發(fā)展抽象、概括能力,提高實際解決問題的能力。
2024-11-28 02:11
【摘要】一、教學(xué)目標(biāo):1、知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望。2、過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機變量的均值或期望。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學(xué)
2024-12-03 11:29
【摘要】離散型隨機變量的均值與方差教學(xué)目標(biāo)(1)進一步理解均值與方差都是隨機變量的數(shù)字特征,通過它們可以刻劃總體水平;(2)會求均值與方差,并能解決有關(guān)應(yīng)用題.教學(xué)重點,難點:會求均值與方差,并能解決有關(guān)應(yīng)用題.教學(xué)過程一.問題情境復(fù)習(xí)回顧:1.離散型隨機變量的均值、方差、標(biāo)準(zhǔn)差的概念和意義,以及計算公式.2.練習(xí)
2024-12-09 04:43
【摘要】一、教學(xué)目標(biāo):1、知識與技能:了解離散型隨機變量的方差、標(biāo)準(zhǔn)差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標(biāo)準(zhǔn)差。2、過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計算有關(guān)隨機變量的方差。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美
【摘要】專業(yè)資料整理分享理科數(shù)學(xué)復(fù)習(xí)專題統(tǒng)計與概率離散型隨機變量及其分布列知識點一1、離散型隨機變量:隨著實驗結(jié)果變化而變化的變量稱為隨機變量,常用字母,X,Y表示,所有取值可以一一列出的隨機變量,稱為離散型隨機變量。2、離散型隨機變量的分布列及其性質(zhì):(
2025-04-04 05:17
【摘要】選修2-3第二章第2課時一、選擇題1.已知隨機變量X的分布列為:P(X=k)=12k,k=1、2、?,則P(2<X≤4)=()A.316B.14C.116D.516[答案]A[解析]P(2<X≤4)=P(X=3)+P(X=4)=12
2024-12-05 06:40
【摘要】隨機變量及概率分布學(xué)習(xí)目標(biāo)重點、難點1.能說出隨機變量的定義;2.能記住隨機變量的概率分布列的兩種形式;3.理解并會應(yīng)用兩點分布.重點:隨機變量的概率分布列.難點:每個隨機變量的概率求法,求隨機變量的概率分布列.1.隨機變量一般地,如果隨機試驗的結(jié)果,可以用一個變量來表示,那么這樣的變量叫做隨
2024-11-19 19:15
【摘要】【與名師對話】2021-2021學(xué)年高中數(shù)學(xué)離散型隨機變量的均值課時作業(yè)新人教A版選修2-3一、選擇題1.已知隨機變量ξ的概率分布如下表所示:ξ012P715715115且η=2ξ+3,則E(η)等于()解析:E(ξ)=0×71
【摘要】數(shù)學(xué)導(dǎo)學(xué)案課題:離散型隨機變量的分布列編號:58時間:第2周命制人:高婷婷班級:姓名: 裝訂線
2025-06-07 21:59
【摘要】學(xué)案5離散型隨機變量及其分布列離散型隨機變量及其分布列布列的概念,認識分布列刻畫隨機現(xiàn)象的重要性,會求某些取有限個值的離散型隨機變量的分布列.,并能進行簡單應(yīng)用.求簡單隨機變量的分布列,以及由此分布列求隨機變量的期望與方差.這部分知識綜合性強,涉及排列、組合、二項式定理和概率,仍會以解答題形式出現(xiàn),以
2025-06-12 18:50
【摘要】10Www.chinaedu.com版權(quán)所有不得復(fù)制1離散型隨機變量的分布列習(xí)題1.?的概率分布如下:114131614????ξ1234P14k1316則E?
2024-11-24 17:14
【摘要】量的分布列(1)一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復(fù)進行;(2)試驗的所有結(jié)果是明確的且不止一個;(3)每次試驗總是出現(xiàn)這些結(jié)果中的一個,但在試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結(jié)果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗一、復(fù)習(xí)引入:例(1)某人射擊一
2024-10-12 17:09
【摘要】1.離散型隨機變量的分布列(1)離散型隨機變量的分布列若離散型隨機變量X可能取的不同值為x1,x2,…,xi,…xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,則表基礎(chǔ)知識梳理Xx1x2?xi?xnP??p1p2pipn稱為離散型隨機變量
2024-11-10 00:24