【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內所
2024-11-17 15:05
【摘要】§2.平面向量的基本定理【學習目標、細解考綱】;.【知識梳理、雙基再現】:如果1e?,2e?是同一平面內兩個的向量,a?是這一平面內的任一向量,那么有且只有一對實數,21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2024-11-30 13:51
【摘要】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
2024-11-12 01:35
【摘要】帶著問題奔向課堂Questioning向量與數量的區(qū)別向量與數量的區(qū)別向量用什么來表示?向量用什么來表示?共行的向與量平線相等向量相反向量認真聽講仔細思考積極發(fā)言知識方法技能向量
2024-11-17 12:11
【摘要】向量的坐標表示平面向量基本定理一、填空題1.若e1,e2是平面內的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2024-12-05 10:15
【摘要】第3課時平面向量的數量積基礎過關1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當θ=0°時,與;當θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數量積的定義:已知兩
2025-06-08 00:02
【摘要】2.1平面向量的實際背景及基本概念1.通過再現物理學中學過的力、位移等概念與向量之間的聯系,在類比抽象過程中引入向量概念,并建立學生學習向量的認知基礎.2.理解向量的有關概念:向量的表示法、向量的模、單位向量、相等向量、共線向量.基礎梳理一、向量的概念1.向量的實際背景.有下列物理量:位移、路程、速度、
2024-11-19 19:36
【摘要】第一頁,編輯于星期六:點三十二分。,2.1平面向量的實際背景及基本概念,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十二分。,第四頁,編輯于星期六:...
2024-10-22 18:47
【摘要】平面幾何中的向量方法學習目標、垂直、相等、夾角和距離等問題.——向量法和坐標法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學習一、設計問題,創(chuàng)設情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2024-11-19 20:38
【摘要】學大教育個性化教學教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學輔導教案學科:數學任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【摘要】平面向量應用舉例命題方向1向量在平面幾何中的應用例1求證:直徑所對的圓周角為直角.[分析]本題實質就是證明AB→2BC→=0.[證明]設AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【摘要】......平面向量基本定理及坐標表示1.平面向量基本定理如果e1、e2是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量a,存在唯一一對實數λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內所有
2025-06-30 20:18
【摘要】§4平面向量的坐標4.1平面向量的坐標表示4.2平面向量線性運算的坐標表示4.3向量平行的坐標表示,)1.問題導航(1)相等向量的坐標相同嗎?相等向量的起點、終點的坐標一定相同嗎?(2)求向量AB→的坐標需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
【摘要】平面向量應用舉例平面幾何中的向量方法問題提出,使得向量可以進行線性運算和數量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內在聯系,在某種條件下,平面向量與平面幾何可以相互轉化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由向量的線性運算及數量積表示出
2024-11-18 12:17
【摘要】2020/12/24向量的加法看書P80~83(限時6分鐘)學習目標:通過實例,掌握向量的加法運算及理解其幾何意義。熟練運用加法的“三角形法則”和“平行四邊形”法則2020/12/24由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機要先從臺北到香港,再從香港到上海,這兩次位移
2024-11-17 11:59