【摘要】絕對(duì)值不等式的解法2??????.,,,,,||;,,,,||,????????11111111即的點(diǎn)的集合數(shù)軸上到原點(diǎn)距離大于它的解集是由絕對(duì)值的幾何意義對(duì)于不等式即的點(diǎn)的集合小于點(diǎn)距離它的解集是數(shù)軸上到原幾何意義由絕對(duì)值的對(duì)于不等式我們知道xx.||;||,||,||,,
2024-11-17 17:34
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【摘要】均值不等式的推廣:2、222(,)1122ababababRab????????3(,,)3abcabcabcR?????1、三、典例分析:,,abc222abcabbcca?????例1、已知是不全相等的實(shí)數(shù),求證:22
2025-03-13 05:16
【摘要】,ab3abab???ab例1、若正數(shù)滿足,則的取值范圍是什么?解:32ababab????當(dāng)且僅當(dāng)ab?時(shí),等號(hào)成立。32abab???2()230abab????3ab??或1ab??(舍)9ab??ab?的取值范圍是[9,)??,ab3ab
【摘要】1、均值不等式:課前熱身:2、均值不等式的變形:2(,)abababR????(,)2abababR????2()(,)2abababR????222abab??3、重要不等式的變形:)0(32)(2?????xxxxxf
【摘要】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48
【摘要】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練§(一)學(xué)習(xí)要求1.理解均值不等式的內(nèi)容及證明.2.能熟練運(yùn)用均值不等式來(lái)比較兩個(gè)實(shí)數(shù)的大?。?.能初步運(yùn)用均值不等式證明簡(jiǎn)單的不等式.學(xué)法指導(dǎo)1.應(yīng)用均值不等式解決有關(guān)問(wèn)題必須緊扣它的適用條件,公式a2+b2≥2
2025-01-13 21:04
【摘要】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會(huì)用兩個(gè)定理解決函數(shù)的最值或值域問(wèn)題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問(wèn)題.【核心掃描】1.基本不等式常用來(lái)考查函數(shù)最值等問(wèn)題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問(wèn)題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【摘要】三個(gè)正數(shù)的算術(shù)3幾何平均不等式?,,?,有怎樣的不等式成立會(huì)個(gè)正數(shù)對(duì)于例如式能否推廣呢這個(gè)不等關(guān)系算數(shù)平均與幾何平均的的數(shù)給出了兩個(gè)正基本不等式思考3.,,,,,:,,,,,等號(hào)成立時(shí)當(dāng)且僅當(dāng)那么如果可能有個(gè)正數(shù)對(duì)于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
2024-11-18 12:12
【摘要】《基本不等式》同步測(cè)試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2024-11-15 21:17
【摘要】第3章不等式(B)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.若a1,y1,且14lnx,14,lny成等比
2024-12-04 22:29
【摘要】不等式的實(shí)際應(yīng)用例1根據(jù)某鄉(xiāng)鎮(zhèn)家庭抽樣調(diào)查的統(tǒng)計(jì),2023年每戶家庭年平均消費(fèi)支出總額為1萬(wàn)元,其中食品消費(fèi)額為。預(yù)測(cè)2023年后,每戶家庭年平均消費(fèi)支出總額每年增加3000元,如果2023年該鄉(xiāng)鎮(zhèn)居民生活狀況能達(dá)到小康水平(即恩格爾系數(shù)n滿足條件40%n≤50%),試問(wèn)這個(gè)鄉(xiāng)鎮(zhèn)每戶食品消費(fèi)額平均每年的增長(zhǎng)率至多是多少?
【摘要】第一頁(yè),編輯于星期六:點(diǎn)三十六分。,第一課時(shí)基本不等式,第二頁(yè),編輯于星期六:點(diǎn)三十六分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十六分。,第四頁(yè),編輯于星期六:點(diǎn)三十六分。,第...
2025-10-13 19:00
【摘要】知識(shí)回顧1.基本不等式;(均值)2.基本不等式求最值的條件回顧練習(xí)。的最小值為恒成立,則實(shí)數(shù),且不等式,設(shè) __________kbakbaba.011001??????多大速度行駛?本最小,汽車應(yīng)以),為了使全程運(yùn)輸成元(;固定部分為為方成正比,且比例系數(shù))的平(單位度部分組成;可變部分
2025-03-12 14:59
【摘要】:)1(2baab??問(wèn)題探究.)2()0,0(22:)1.(122立的條件請(qǐng)寫出上述兩式等號(hào)成②①請(qǐng)你證明探究??????baabbaabba.,1.,)1.(2請(qǐng)你找出并證明中的一個(gè)不等式著探究其中隱含形的直角三角形圍成正方分別為以四個(gè)全等的兩直角邊探究ABC
2025-03-12 14:58