【摘要】一輪復習學案§應(yīng)用(1)姓名☆復習目標:1.理解可導函數(shù)的單調(diào)性與其導數(shù)的關(guān)系;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。?基礎(chǔ)熱身:1.3()31fxaxx???對于?
2024-12-08 01:48
【摘要】單調(diào)性與最大(小)值班級:__________姓名:__________設(shè)計人__________日期__________課前預習·預習案【溫馨寄語】假如生活是一條河流,愿你是一葉執(zhí)著向前的小舟;假如生活是一葉小舟,愿你是個風雨無阻的水手?!緦W習目標】1.理解函數(shù)的單調(diào)性及其幾何意義.2.能根據(jù)圖象的升降特征
2024-11-28 12:05
【摘要】第二章函數(shù)§3函數(shù)的單調(diào)性(本欄目內(nèi)容,在學生用書中以活頁形式分冊裝訂!)一、選擇題(每小題5分,共20分),在區(qū)間(0,2)上為增函數(shù)的是…………………………………()=3-=x2+1=-x2=x2-2x-3【解析】畫圖可知,y=x2+1在(0,+∞
2024-11-15 03:18
【摘要】第十二課時函數(shù)的單調(diào)性和奇偶性【學習導航】學習要求:1、熟練掌握函數(shù)單調(diào)性,并理解復合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學會對函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x0時,f(x)0,f(1)=-.(1
2025-06-07 23:22
【摘要】單調(diào)性與最大(?。┲蛋嗉?__________姓名:__________設(shè)計人__________日期__________課后練習【基礎(chǔ)過關(guān)】1.若函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上也是增函數(shù),則函數(shù)在區(qū)間上2.下列函數(shù)在(0,1)上是增函數(shù)的是A.B.C.D.3.函數(shù),在上是
2024-11-28 00:24
【摘要】學而私學,不亦說乎?高中數(shù)學會考數(shù)列專題訓練一、選擇題:(本大題共12小題,每小題4分,共48分)1、數(shù)列0,0,0,0…,0,… A、是等差數(shù)列但不是等比數(shù)列 B、是等比數(shù)列但不是等差數(shù)列 C、既是等差數(shù)列又是等比數(shù)列 D、既不是等差數(shù)列又不是等比數(shù)列2、已知數(shù)列,則9是這個數(shù)列的 A、第12項 B、第13項 C、第14項 D、第15項3、已知等差數(shù)列
2025-04-04 05:06
【摘要】高中數(shù)學講義之解析幾何圓錐曲線第1講橢圓【知識要點】1、橢圓的定義1.橢圓的第一定義:平面內(nèi)到兩個定點、的距離之和等于定長()的點的軌跡叫橢圓,這兩個定點叫做橢圓的焦點,兩個焦點之間的距離叫做焦距。注1:在橢圓的定義中,必須強調(diào):到兩個定點的距離之和(記作)大于這兩個定點之間的距離(記作),否則點的軌跡就不是一個橢圓。具體情形如下:(?。┊敃r,點的軌
2025-04-04 05:15
【摘要】第一篇:高中數(shù)學新人教A版必修1 《函數(shù)單調(diào)性》教學設(shè)計 基于函數(shù)單調(diào)性概念是高中教材中形式化程度較強,學生較難理解以及要讓學生充分了解概念后面所蘊涵的數(shù)學思想的主張,筆者以“數(shù)學本原性問題驅(qū)動”...
2024-11-10 00:07
【摘要】12?分的創(chuàng)立導致了微積期的研究數(shù)量的變化規(guī)律進行長我們可以對通過研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時型化規(guī)律的重要數(shù)學模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會導數(shù)在研究函從中你的性質(zhì)我們運用導數(shù)研究函數(shù)下面34?????
2024-11-18 15:24
【摘要】第二章第2課時函數(shù)的單調(diào)性的應(yīng)用一、選擇題1.已知函數(shù)f(x)=3x,則在下面區(qū)間內(nèi)f(x)不是遞減函數(shù)()A.(0,+∞)B.(-∞,0)C.(-∞,0)∪(0,+∞)D.(1,+∞)[答案]C[解析]f(x)=3x在(0,+∞)上和(-∞,0)上都是減函數(shù)
2024-11-28 00:02
【摘要】第三章導數(shù)應(yīng)用§1函數(shù)的單調(diào)性與極值導數(shù)與函數(shù)的單調(diào)性雙基達標?限時20分鐘?1.函數(shù)f(x)=2x-sinx在(-∞,+∞)上().A.增函數(shù)B.減函數(shù)C.有最大值D.有最小值解析∵f′(x)=2-cosx0,∴f(x)是
2024-12-03 00:14
【摘要】函數(shù)的單調(diào)性與導數(shù)(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos
2024-11-18 12:09
【摘要】知識點五:函數(shù)解析式的求法(1)配湊法:由已知條件f(g(x))=F(x),可將F(x)改寫成關(guān)于g(x)的表達式,然后以x替代g(x),便得f(x)的解析式(如例(1));(2)待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù)),可用待定系數(shù)法(如例(3));(3)換元法:已知復合函數(shù)f(g(x))的解析式,可用換元法,此時要注意新元的取值范圍(如例(2));(4)方程思
2025-06-16 03:50
【摘要】課題§(1)三維教學目標知識與能力1.建立增(減)函數(shù)的概念,通過觀察一些函數(shù)圖象的特征,形成增(減)函數(shù)的直觀認識.再通過具體函數(shù)值的大小比較,認識函數(shù)值隨自變量的增大(減?。┑囊?guī)律,由此得出增(減)函數(shù)單調(diào)性的定義.(ABC),以圖識數(shù)的過程,在這個過程中,讓學生通過自主探究活動,體驗數(shù)學概念的形成過程的真諦。(AB)過
2025-06-07 23:21
2024-11-28 15:50