【摘要】1第四節(jié)2全概率公式和貝葉斯公式主要用于計(jì)算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用.綜合運(yùn)用加法公式P(A+B)=P(A)+P(B)A、B互不相容乘法公式P(AB)=P(A)P(B|A)P(A)03設(shè)nAAA,,,21?為一個(gè)
2025-08-04 14:06
【摘要】現(xiàn)代信息決策方法2-5貝葉斯決策第三節(jié)風(fēng)險(xiǎn)型決策常用的風(fēng)險(xiǎn)型決策方法:(一)最大可能法(二)期望值決策(三)決策樹(shù)決策(四)貝葉斯決策(五)效用決策設(shè)不確定型決策問(wèn)題的狀態(tài)出現(xiàn)的概率為(或)連續(xù)時(shí)記為。
2025-02-28 22:15
【摘要】西南財(cái)經(jīng)大學(xué)天府學(xué)院§全概率公式與貝葉斯公式一、全概率公式二、貝葉斯公式1西南財(cái)經(jīng)大學(xué)天府學(xué)院西南財(cái)經(jīng)大學(xué)天府學(xué)院例1有三個(gè)箱子,分別編號(hào)為1,2,3,1號(hào)箱裝有1個(gè)紅球4個(gè)白球,2號(hào)箱裝有2紅3白球,3號(hào)箱裝有3紅球.某人從三箱中任取一箱,從中任意摸出一球,求取得紅球的概率.解:記Ai={球取自i號(hào)箱},
2025-05-03 18:43
【摘要】基于樸素貝葉斯的文本分類算法摘要:常用的文本分類方法有支持向量機(jī)、K-近鄰算法和樸素貝葉斯。其中樸素貝葉斯具有容易實(shí)現(xiàn),運(yùn)行速度快的特點(diǎn),被廣泛使用。本文詳細(xì)介紹了樸素貝葉斯的基本原理,討論了兩種常見(jiàn)模型:多項(xiàng)式模型(MM)和伯努利模型(BM),實(shí)現(xiàn)了可運(yùn)行的代碼,并進(jìn)行了一些數(shù)據(jù)測(cè)試。關(guān)鍵字:樸素貝葉斯;文本分類TextClassificationAlgorithmBas
2025-06-23 20:15
【摘要】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類算法?還使用前面的例子:鱸魚(yú)(seabass)和鮭魚(yú)(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚(yú)進(jìn)行表示。?新來(lái)了一條魚(yú)特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚(yú)ω1還是鮭魚(yú)ω2??已知數(shù)據(jù):鱸魚(yú)類標(biāo)號(hào)ω1,鮭魚(yú)類標(biāo)號(hào)ω2。鱸魚(yú)
2025-03-04 14:22
【摘要】課前思考?機(jī)器自動(dòng)識(shí)別分類,能不能避免錯(cuò)分類??怎樣才能減少錯(cuò)誤??不同錯(cuò)誤造成的損失一樣嗎??先驗(yàn)概率,后驗(yàn)概率,概率密度函數(shù)??什么是貝葉斯公式??正態(tài)分布?期望值、方差??正態(tài)分布為什么是最重要的分布之一?學(xué)習(xí)指南?理解本章的關(guān)鍵?要正確理解先驗(yàn)概率,類概率密度函數(shù),后驗(yàn)
2025-02-06 05:59
【摘要】練習(xí)亞洲各國(guó)人均壽命(Y)、人均GDP(X1)、成人識(shí)字率(X2)、一歲兒童疫苗接種率(X3)數(shù)據(jù)GDP、成人識(shí)字率、一歲兒童疫苗接種率的數(shù)量關(guān)系第六講多元線性回歸模型的參數(shù)估計(jì)4引子:中國(guó)已成為世界汽車產(chǎn)銷第一大國(guó)中國(guó)社會(huì)科學(xué)院《中國(guó)汽車社會(huì)發(fā)展報(bào)告2022-2022》
2025-05-01 22:12
【摘要】1撰寫日期:201*年04月27日本科生畢業(yè)論文(設(shè)計(jì))題目基于貝葉斯網(wǎng)絡(luò)的汽車可靠性模型研究學(xué)院機(jī)電工程學(xué)院
2025-06-30 10:17
【摘要】基于貝葉斯神經(jīng)網(wǎng)絡(luò)方法的短期負(fù)荷預(yù)測(cè)摘要:短期負(fù)荷預(yù)測(cè)對(duì)于有效的電力系統(tǒng)規(guī)劃和運(yùn)營(yíng)是非常重要的工具。我們?cè)诒疚奶岢鍪褂秘惾~斯方法來(lái)設(shè)計(jì)一個(gè)基于電力負(fù)荷預(yù)測(cè)模型的最優(yōu)神經(jīng)網(wǎng)絡(luò)。貝葉斯建模法比傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)法具有更顯著的優(yōu)勢(shì)。在其他方法中,我們是通過(guò)引用正則化系數(shù)的自動(dòng)調(diào)諧,選擇最重要的輸入變量,引出說(shuō)明模型輸出的不確定性區(qū)間及對(duì)不同模型進(jìn)行比較的可能性來(lái)選取最優(yōu)模型的。我們提出的這
2025-06-26 05:21
【摘要】繼續(xù)教育學(xué)院畢業(yè)論文題目:基于貝葉斯算法的垃圾郵件過(guò)濾技術(shù)綜述學(xué)生姓名:李達(dá)夫?qū)W號(hào):092028010027班級(jí):CMU3097專業(yè):指導(dǎo)教師:鄒政2011年10
2025-06-27 21:06
【摘要】框架單目標(biāo)決策多屬性決策個(gè)體決策群組決策不確定型決策風(fēng)險(xiǎn)型決策貝葉斯決策簡(jiǎn)單線性加權(quán)法理想解方法及改進(jìn)層次分析法等沖突分析集體決策社會(huì)選擇理論專家咨詢方法博弈分析談判決策風(fēng)險(xiǎn)性決策與貝葉斯決策
2025-02-17 12:45
【摘要】第2章貝葉斯決策理論,2.0基本概念2.1最小錯(cuò)誤概率的Bayes決策2.2最小風(fēng)險(xiǎn)的Bayes決策2.3Neyman-Pearson決策2.4Bayes估計(jì)和Bayes學(xué)習(xí)2.5正態(tài)分布時(shí)的Baye...
2025-11-08 22:47
【摘要】物聯(lián)網(wǎng)系數(shù)據(jù)處理與智能決策解迎剛物聯(lián)網(wǎng)系Tel:136911179392智慧知識(shí)信息數(shù)據(jù)智能決策數(shù)據(jù)處理物聯(lián)網(wǎng)感知為什么要進(jìn)行數(shù)據(jù)預(yù)處理、如何對(duì)數(shù)據(jù)進(jìn)行預(yù)處理數(shù)據(jù)準(zhǔn)備:數(shù)據(jù)處理的要求和方法物聯(lián)網(wǎng)技術(shù)物聯(lián)網(wǎng)技術(shù)推動(dòng)了
2026-01-03 13:31
【摘要】模式識(shí)別徐蔚然北京郵電大學(xué)信息工程學(xué)院本節(jié)和前節(jié)的關(guān)系?上節(jié):基本概念?階段性的總結(jié)?本節(jié):概念具體化?結(jié)合一種比較典型的概率分布來(lái)進(jìn)一步基于最小錯(cuò)誤貝葉斯決策分類器的種種情況本節(jié)重點(diǎn)?什么叫正態(tài)分布?高斯分布的表達(dá)式?如
2025-04-30 12:09
【摘要】二元線性回歸模型的估計(jì)最簡(jiǎn)單的多元線性回歸模型是二元線性回歸模型,即具有一個(gè)被解釋變量和兩個(gè)解釋變量的線性回歸模型:iiXiXiY????????22110,i=1,2,…,n。一、二元線性回歸模型的參數(shù)估計(jì)1.偏回歸系數(shù)的估計(jì)對(duì)于二元線性回歸模型:iiXiXiY????????2
2025-05-11 20:13