【摘要】三角形的內(nèi)切圓同步練習◆基礎(chǔ)訓練1.如圖1,⊙O內(nèi)切于△ABC,切點為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-28 12:53
【摘要】 三角形的內(nèi)切圓 一、選擇題 1.如圖K-50-1所示,已知△ABC的內(nèi)切圓⊙O與各邊分別相切于點D,E,F(xiàn),那么點O是△DEF的( ) A.三條中線的交點...
2024-12-04 22:35
【摘要】三角形的內(nèi)切圓教學目的:1.使學生掌握三角形的內(nèi)切圓的作法.2.使學生掌握三角形內(nèi)心的定義和性質(zhì).教學的重點和難點:三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應用即是重點,又是難點.教學過程:一、復習與提問(學生回答)角的平分線的性質(zhì)定理和判定定理二、講授新課1.
2024-12-07 23:37
【摘要】天高任鳥飛,海闊憑魚躍。回顧與思考:1,如圖1)若h=2cm,l=5cm,則i=2)若i=1:,h=2m,則l=2,水庫的橫斷面是梯形ABCD,迎水坡AB的坡度i=1:2壩高h=20m,迎水坡的水平寬度=tana=ABh
2024-11-10 13:06
【摘要】魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白
2024-11-27 23:38
【摘要】解直角三角形應用例1廠房屋頂人字架(等腰三角形)的跨度為10m,角A=26?。求中柱BC(C為底邊中點)和上弦AB的長(精確到0?01cm)跨度ABCD上弦中柱lΦDΦdak=D-dl若一錐體的錐度為1:8,求此錐體斜角a.幾個概念:
2024-11-10 13:07
【摘要】三角形定義、有關(guān)概念、邊、角、外角主要線段三角形的角平分線三角形的中線三角形的高分類按邊分不等邊三角形等腰三角形底邊和腰不相等的等腰三角形等邊三角形按角分直角三角形斜三角形銳角三角形鈍角三角形性質(zhì)(一般三角形)邊的關(guān)系三角形兩邊的和大
2024-11-07 02:32
【摘要】1、確定一個圓的位置與大小的條件是什么?①圓心與半徑2、敘述角平分線的性質(zhì)與判定性質(zhì):角平分線上的點到這個角的兩邊的距離相等.判定:到這個角的兩邊距離相等的點在這個角的平分線上.3、下圖中△ABC與圓O的關(guān)系?△ABC是圓O的內(nèi)接三角形;圓O是△ABC的外接圓圓心O點叫△ABC的外心或②不在同一直線
2024-12-08 03:00
【摘要】4、5三角形的內(nèi)切圓【知識鏈接】1、確定圓的條件有哪些?2、什么是角平分線?角平分線有哪些性質(zhì)?3、左圖中△ABC與⊙O有什么關(guān)系?△ABC是⊙O的三角形;⊙O是△ABC的圓圓心O點叫△ABC的心。【學習目標】1、通過作圖操作,經(jīng)歷三角形
2024-12-05 07:26
【摘要】一、教學目的和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形的內(nèi)心概念,掌握三角形內(nèi)切圓的作法。。二、教學重點、難點重點:三角形內(nèi)切圓的作法、三角形的內(nèi)心與性質(zhì)。難點:三角形與圓的位置關(guān)系中的“內(nèi)”與“外”、“接”與“切”四個概念的理解和運用。三、教學過程復習提問的條件是什么?、
2024-12-01 04:14
【摘要】三角形的高、中線和角平分線習題課1.在下列畫圖中,分別畫出了△ABC中BC邊上的高AD,其中正確的是()2.如圖,在△ABC中,BD=CD,∠ABE=∠CBE,BE交AD于F。(1)AD是△的線,是△BCE的中線;(
2024-11-06 15:52
【摘要】 九年級數(shù)學《三角形的內(nèi)切圓》評課稿 本節(jié)課教學層次分明,教學過程教流暢,較好地體現(xiàn)了學生的主體性,是一節(jié)比較成功的公開課。 一、概念的引入上體現(xiàn)了解決“從何來”的問題,周老師用怎樣從一塊...
2025-04-03 12:25
【摘要】如何表示線段、射線和直線?回顧與思考:線段可用或或來表示.ABa線段AB線段BA線段a:射線可用來表示.注意:.AB射線AB必須
2024-11-10 01:32
【摘要】(3)一、復習:判斷三角形全等至少要有幾個條件?答:至少要有三個條件ABCA/B/C/在△ABC和△A′B′C′中AB=A′B′∠B=∠B′BC=B′C′有一個角和夾這個角的兩邊對應相等的兩個三角形全等。
2024-11-06 21:59