【摘要】橢圓專題練習(xí)1.【2017浙江,2】橢圓的離心率是A. B. C. D.2.【2017課標(biāo)3,理10】已知橢圓C:,(ab0)的左、右頂點(diǎn)分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B. C. D.3.【2016高考浙江理數(shù)】已知橢圓C1:+y2=1(m1)與雙曲線C2:–y2=1(n
2025-06-18 19:07
【摘要】..(數(shù)學(xué)5必修)第一章:解三角形一、選擇題1.在△ABC中,若,則等于()A.B.C.D.2.若為△ABC的內(nèi)角,則下列函數(shù)中一定取正值的是()A.B.C.D.3.在△ABC中,角均為銳角,且則△ABC的形狀是()A.直角三角形B.銳角
2025-08-05 18:06
【摘要】第一篇:高中數(shù)學(xué)幾何證明練習(xí) 1、如圖所示,在RtDABC中,DC=900,點(diǎn)D在AB上,以BD為直徑的圓恰好與AC相切于點(diǎn)E,若 AD=23,AE=6,則EC=_______ 2、如圖,已知圓...
2024-11-16 23:31
【摘要】山東省新人教B版2021屆高三單元測試5必修2第二章《平面解析幾何初步》(本卷共150分,考試時間120分鐘)一、選擇題(本大題共12小題,在每小題給出的四個選項中,只有一項是符合題目要求的)1.直線3ax-y-1=0與直線(a-23)x+y+1=0垂直,則a的值是()A.-1或13
2024-12-09 15:48
【摘要】一.教學(xué)內(nèi)容:??????橢圓的幾何性質(zhì)?二.教學(xué)目標(biāo):通過橢圓標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用.通過對橢圓的幾何性質(zhì)的教學(xué),培養(yǎng)學(xué)生分析問題和解決實(shí)際問題的能力.使學(xué)生掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標(biāo)系中曲線與方程的
2025-07-23 11:21
【摘要】第六講立體幾何新題型【考點(diǎn)透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運(yùn)算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【摘要】華夏學(xué)校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【摘要】新課標(biāo)立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-04-04 05:07
【摘要】有志者自有千計萬計,無志者只感千難萬難!高中數(shù)學(xué)必修2專題輔導(dǎo)一1.多面體的結(jié)構(gòu)特征(1)棱柱的上下底面平行,側(cè)棱都平行且長度相等,上底面和下底面是全等的多邊形.(2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點(diǎn)的三角形.(3)棱臺可由平行于棱錐底面的平面截棱錐得到,其上下底面的兩個多邊形相似.2.旋轉(zhuǎn)體的結(jié)構(gòu)特征(1)圓柱可以由矩形繞其一邊所在直線旋轉(zhuǎn)得
2025-04-04 05:09
【摘要】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點(diǎn),且,與⊙O所在的平面成角,是中點(diǎn).F為PB中點(diǎn).(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn), (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-01-14 11:10
【摘要】高中數(shù)學(xué)函數(shù)專題1.已知在實(shí)數(shù)域R上可導(dǎo)的函數(shù)對任意實(shí)數(shù)都有若存在實(shí)數(shù),使,求證:(1);(2)上是單調(diào)函數(shù)證明:(1)又,(2)即在R上是單調(diào)遞增函數(shù).2.已知拋物線C的方程為為焦點(diǎn),直線與C交于A、B兩點(diǎn),P為AB的中點(diǎn),直線過P、F點(diǎn)。(1)求直線的斜率關(guān)于的解析式,并指出定義域;(2)求函數(shù)的反函數(shù);(3)求與的夾角的取值范圍。(4)解不等
2025-08-05 18:29
【摘要】1北師大版高中數(shù)學(xué)必修2第二章《解析幾何初步》全部教案法門高中姚連省§2、1直線與直線的方程第一課時直線的傾斜角和斜率一、教學(xué)目標(biāo):1、知識與技能:(1)、正確理解直線的傾斜角和斜率的概念.(2)、理解直線的傾斜角的唯一性.(3)、理解直線的斜率的存在性.(4)、斜率公式的推
2025-01-11 00:52
【摘要】求函數(shù)解析式常用的方法(一)待定系數(shù)法它適用于已知所求函數(shù)類型(如一次函數(shù),二次函數(shù),正、反例函數(shù)等)及函數(shù)的某些特征求其解析式的題目。其方法:已知所求函數(shù)類型,可預(yù)先設(shè)出所求函數(shù)的解析式,再根據(jù)題意列出方程組求出系數(shù)。例1:已知是二次函數(shù),若且試求的表達(dá)式。解析:設(shè)(a0),由得c=0,由得,,整理得得小結(jié):我們只要明確所求函數(shù)解析式的類型,便可設(shè)出
2025-04-04 05:13
【摘要】第一篇:高中數(shù)學(xué)幾何證明題 新課標(biāo)立體幾何??甲C明題匯總 1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn) (1)求證:EFGH是平行四邊形 (2)若 ...
2025-10-13 21:58