【摘要】拆分函數(shù)解析式結構,巧解問題--------------函數(shù)值域(最值)問題的解法在高中,初學函數(shù)之時,我們接觸的具體函數(shù)并不多。前面我們已經(jīng)給出了一元二次函數(shù)值域(最值)的求法步驟。除此,還有一類函數(shù)也很常見,它也是今后解決其他復雜函數(shù)值域(最值)問題的基礎。此類函數(shù)看似生疏,而實際這類函數(shù)的圖像,就是我們初中學過的反比例函數(shù)圖像。此類問題有三種類型,一種是函數(shù)式子決定定義域,
2025-03-24 05:36
【摘要】博鑫教育奧數(shù)班 第六講最值問題 2017年春季第六講:最值問題【教學重難點】用極端化和平均化思想解決最值問題?!菊n前預習】根據(jù)輔導書相應地給孩子預習的內(nèi)容。第一部分:極端化思想【例1】(★★★)一次考試共25道題。若佳佳,海海,陽陽和娜娜分別答對21,22,23,24道。則四人都答對的題目至少多少道?(先最再對:先從最值的方向分析,最后檢驗是否正
2025-03-24 04:40
【摘要】幾何最值問題一.選擇題(共6小題)1.(2015?孝感一模)如圖,已知等邊△ABC的邊長為6,點D為AC的中點,點E為BC的中點,點P為BD上一點,則PE+PC的最小值為( ?。.3B.3C.2D.3考點:軸對稱-最短路線問題.菁優(yōu)網(wǎng)版權所有分析:由題意可知點A、點C關于BD對稱,連接AE交BD于點P,由對稱的性質(zhì)可得,
2025-06-23 18:44
【摘要】???xyo(1)配方。(2)畫圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點和最低點)122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2025-11-12 23:43
【摘要】數(shù)學組卷圓的最值問題 一.選擇題(共7小題)1.(2014春?興化市月考)在平面直角坐標系中,點A的坐標為(3,0),點B為y軸正半軸上的一點,點C為第一象限內(nèi)一點,且AC=2,設tan∠BOC=m,則m的取值范圍是( ?。〢.m≥0 B. C. D. 2.(2013?武漢模擬)如圖∠BAC=60°,半徑長1的⊙O與∠BAC的兩邊相切,P為⊙O上一動點,以P為圓
【摘要】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2025-07-25 00:14
【摘要】中考數(shù)學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關系)求最值;(2)應用垂線段最短的性質(zhì)求最值;(3)應用軸對稱的性質(zhì)求最值;(4)應用二次函數(shù)求最值;(5)應用其它
2025-04-04 03:00
【摘要】【高考地位】導數(shù)在研究函數(shù)的極值與最值問題是高考的必考的重點內(nèi)容,已由解決函數(shù)、數(shù)列、不等式問題的輔助工具上升為解決問題的必不可少的工具,特別是利用導數(shù)來解決函數(shù)的極值與最值、零點的個數(shù)等問題,在高考中以各種題型中均出現(xiàn),對于導數(shù)問題中求參數(shù)的取值范圍是近幾年高考中出現(xiàn)頻率較高的一類問題,其試題難度考查較大.【方法點評】類型一利用導數(shù)研究函數(shù)的極值使用情景:一般函數(shù)類型
2025-03-25 23:06
【摘要】......第42課三角形中的最值問題考點提要1.掌握三角形的概念與基本性質(zhì).2.能運用正弦定理、余弦定理建立目標函數(shù),解決三角形中的最值問題.基礎自測1.(1)△ABC中,,則A的值為30°或90&
2025-03-24 05:43
【摘要】WORD資料可編輯高三數(shù)學專題復習圓錐曲線中的最值問題和范圍的求解策略最值問題是圓錐曲線中的典型問題,它是教學的重點也是歷年高考的熱點。解決這類問題不僅要緊緊把握圓錐曲線的定義,而且要善于綜合應用代數(shù)、平幾、三角等相關知識。以下從五個方面予以闡述。一.求距離的最
2025-03-24 05:53
【摘要】一元二次函數(shù)的最值問題????????一元二次函數(shù)的最值問題是高一知識中的一個重點、熱點,也是同學們在學習過程中普遍感到困惑的一個難點,它考查了函數(shù)的單調(diào)性,以及數(shù)形結合、分類討論等數(shù)學思想和方法。下面對這一知識點進行簡單總結。??????
2025-03-24 05:31
【摘要】[文件][科目]數(shù)學[年級]高中[章節(jié)][關鍵詞]平均值/最值/函數(shù)[標題]用平均值定理求某些問題的最值[內(nèi)容]石景山區(qū)教師進修學校賈光輝教學目標.,進一步培養(yǎng)學生的觀察能力、分析問題解決問題的能力..,學生進一步認識現(xiàn)實世界中的量不等是普遍的,相等是局部的,對學生進行辯證唯物主義教育.教學重點與難點重點:用平均
2025-08-07 14:45
【摘要】二次函數(shù)中絕對值問題的求解策略二次函數(shù)是高中函數(shù)知識中一顆璀璨的“明珠”,而它與絕對值知識的綜合,往往能夠演繹出一曲優(yōu)美的“交響樂”,故成為高考“新寵”。二次函數(shù)和絕對值所構成的綜合題,由于知識的綜合性、題型的新穎性、解題方法的靈活性、思維方式的抽象性,學習解題時往往不得要領,現(xiàn)從求解策略出發(fā),對近年來各類考試中的部分相關考題,進行分類剖析,歸納出一般解題思考方法。一、適時用分類,討
2025-04-04 04:23
【摘要】三角函數(shù)的最值問題溫州第二高級中學例1:解:例2:解:例3:解:例4
2025-10-28 19:16
【摘要】圓錐曲線中的最值及范圍問題課時考點14高三數(shù)學備課組考試內(nèi)容:橢圓、雙曲線、拋物線的幾何性質(zhì)及直線與圓錐曲線的位置關系.高考熱點:解析幾何與代數(shù)方法的綜合.熱點題型1:重要不等式求最值新題型分類例析熱點題型2:利用函數(shù)求最值熱點題型3:利用導數(shù)求最值熱點題型4:利用判別
2025-10-28 16:44