【摘要】晶體結(jié)構(gòu)的對稱性平移操作______周期平移T,分數(shù)周期平移T/n晶體操作點操作(至少一點不動)_____旋轉(zhuǎn)、反演
2025-08-05 17:57
【摘要】一.晶體的宏觀對稱性2.宏觀對稱元素的組合和32個點群晶體的對稱性有宏觀對稱性和微觀對稱性之分,前者指晶體的外形對稱性,后者指晶體微觀結(jié)構(gòu)的對稱性。本節(jié)我們主要學(xué)習(xí)晶體的宏觀對稱性。主要內(nèi)容:1.晶體的宏觀對稱元素4.十四種空間點陣3.特征對稱元素與7個晶系hnncs??????
2025-10-03 14:14
【摘要】觀察與思考如圖,△ABC中,如果過一邊上任一點D,作另一邊的平行線DE,截去一個角后,所得的是什么四邊形?一組對邊平行,另一組對邊不平行的四邊形叫做梯形.你能由等腰三角形得到等腰梯形嗎?AEBCDEBCD在梯形中,平行的邊稱為底,短的為上底,長的為下底,不平行的邊稱為腰,底和腰的
2025-10-31 05:34
【摘要】圓的對稱性2之垂徑定理CDM└●OAB圓是對稱圖形,它有哪些對稱性?既是對稱軸旋轉(zhuǎn)中心直徑所在直線圓心幾條?幾度?無數(shù)條任意角度軸對稱又是中心對稱將圖中的扇形AOB繞點O逆時針旋轉(zhuǎn)某個角度。對比前后兩個圖形,我們發(fā)
2025-07-18 18:05
【摘要】課題:圓的軸對稱性(1)教學(xué)目標(biāo)1.使學(xué)生理解圓的軸對稱性.2.掌握垂徑定理.3.學(xué)會運用垂徑定理解決有關(guān)弦、弧、弦心距以及半徑之間的證明和計算問題.教學(xué)重點垂徑定理是圓的軸對稱性的重要體現(xiàn),是今后解決有關(guān)計算、證明和作圖問題的重要依據(jù),它有著廣泛的應(yīng)用,因此,本節(jié)課的教學(xué)重點是:垂徑定理及其應(yīng)用.教學(xué)難點
2025-11-11 02:16
【摘要】第四章分子對稱性Chapter4.MolecularSymmetryandIntroductiontoGroupTheory對稱性概念分子中的對稱操作與對稱元素分子點群分子對稱性與偶極矩、旋光性的關(guān)系分子的對稱性與偶極矩分子的對稱性與旋光性Conte
2025-05-02 12:08
【摘要】第三節(jié)晶體的對稱性和分類本節(jié)主要內(nèi)容:一、晶體的宏觀對稱性和宏觀對稱操作二、晶體的微觀對稱性和微觀對稱操作三、群和晶體結(jié)構(gòu)的分類物體的性質(zhì)在不同方向或位置上有規(guī)律地重復(fù)出現(xiàn)的現(xiàn)象稱為對稱性對稱性的本質(zhì)是指系統(tǒng)中的一些要素是等價的,它可使復(fù)雜物理現(xiàn)象的描述變得簡單、明了。因為對稱性越高的系統(tǒng),需要獨立表征的系
2025-04-29 12:01
【摘要】第三章分子的對稱性和點群第一節(jié)分子的對稱性一對稱操作和對稱元素對稱操作:如果對分子圖形進行某種操作后,不改變其中任何兩點間距離,仍能得到分子的等價圖形,并經(jīng)過數(shù)次操作后使分子圖形完全復(fù)原的操作。對稱元素:進行對稱操作所憑借的幾何要素(點、線、面等)。(一)分子的對稱操作種類1旋轉(zhuǎn)
2025-05-13 11:44
【摘要】等腰三角形的軸對稱性(三)請你說說等邊三角形有哪些特殊性質(zhì).★等邊三角形是軸對稱圖形,并且有3條對稱軸.■等邊三角形的每個角都等于600.判別等邊三角形有哪些方法?●3個角相等的三角形是等邊三角形.◆有兩個角等于600的三角形是等邊三角形.★有一個角等于600的等腰三角形是等邊三角形.觀
2025-11-29 12:19
【摘要】北京二十中王云松初中數(shù)學(xué)資源網(wǎng)O圓除了是旋轉(zhuǎn)對稱圖形外,還是軸對稱圖形提問:圓是什么對稱圖形?初中數(shù)學(xué)資源網(wǎng)OACBNMD圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。初中數(shù)學(xué)資源網(wǎng)OACBN
2025-11-03 02:37
【摘要】··fv0m力心證明:在有心力場作用下,質(zhì)點必在同一平面內(nèi)運動。Q1Q2求均勻帶電球面球心的電場強度(電場強度是矢量)1對稱性原理(principleofsymmetry)一.基本概念二.基本操作與對稱性的分類三.對稱性原理四.對稱性與守恒定律對稱性的規(guī)律具有極大的
2025-04-29 00:14
【摘要】材料科學(xué)基礎(chǔ)2022年6月1日1時6分P1第二節(jié):晶體的宏觀對稱性?對稱性是晶體的基本性質(zhì)之一,是晶體分類的基礎(chǔ)。?對稱:symmetry?Latinsymmetria?拉丁語symmetria?fromGreeksummetria?源自希臘語summetria?fromsum
2025-05-04 01:23
【摘要】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在直線形中學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2025-11-14 10:46
【摘要】?對稱性和疊加性?奇偶虛實性?尺度變換特性?時移特性和頻移特性?微分和積分特性?卷積定理?Paseval定理§一、對稱性?若已知?則?????????dejFtftj)(21)(,)(21)(???????????dejFtftj
2025-01-14 15:26
【摘要】周期性的幾個結(jié)論?若f(x+a)=f(x+b)(a≠b),則f(x)是周期函數(shù),︱b-a︱是它的一個周期;?若f(x+a)=-f(x)(a≠0),則f(x)是周期函數(shù),2a?若f(x+a)=(a≠0,且f(x)≠0),則f(x)是周期函數(shù),
2025-10-28 20:13