【正文】
fusing issues and attempts to establish the facts concerning the protection of reinforcement from premature corrosion in concrete repair, particularly that offered by corrosion inhibitors. How can we expect repaired concrete structures to be durable if the testing 8 methods, design and specification of corrosion protection methods, are relying on an inadequate assumption that electrochemistry in a repair system is similar to that occurring in new construction? There are significant differences between new construction and repair jobs。 保護措施可以另外采取,但不是做為使用基礎(chǔ)的正確代用品。 適量的研究要求為不同系統(tǒng)的評估作準備。 作者意識到當一些論點成為爭論的關(guān)鍵時,那些論 點將很難讓人達成共識。非常抱歉的是,并不如此。 一些在修理領(lǐng)域內(nèi)的研究已經(jīng)涉及到修理材料和他們與現(xiàn)有實體有關(guān)的空間行為特性的改進。 預埋入水泥中的鋼筋的腐蝕是種極其復雜的現(xiàn)象,這種現(xiàn)象的形成涉及到環(huán)境學,冶金學,分界面和連續(xù)統(tǒng)一體等因素。 在這里提供關(guān)于腐蝕和保護問題各方面的重要評論是不可能的 .那些問題相對于本篇中的某個的重要討論來說太廣泛,而且各種各樣的結(jié)構(gòu)過于復雜。而它不僅應用于修復結(jié)構(gòu)鋼筋銹蝕的過程和混凝土的惡化腐蝕過程, 而且也被應用于多種被提議的溶液腐蝕保護技術(shù),材料和系統(tǒng)。 這是一個不幸的事實。 2 文獻名稱 在混凝土的修復過程中的腐蝕抑制劑和其他保護 系統(tǒng):真正的理解或者誤解 文獻名稱 Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts 作者: 起止頁碼: 168172 出版日期(期刊號): ISBN 7560824927 出版單位: Dept. of Civil Engg. Crescent Engg. College, India. 外文翻譯譯文 : 在混凝土的修復過程中的腐蝕抑制劑和其他保護 系統(tǒng): 真正的理解或者誤解 在最近的一段時間內(nèi),在世界的很多地方,早期鋼筋的腐蝕而對混凝土結(jié)構(gòu)產(chǎn)生的早期惡化和損壞,已經(jīng)成為混凝土結(jié)構(gòu)方面的主要問題。 本科畢業(yè)設(shè)計(論文)外文翻譯譯文 學生姓名 : 院 (系): 專業(yè)班級 : 指導教師 : 完成日期 : 年 月 日 1 要 求 外文翻譯是畢業(yè)設(shè)計(論文)的主要內(nèi)容之一,必須學生獨立完成。加速這個惡化過程的一個主要因素是混凝土結(jié)構(gòu)所存在的環(huán)境和氣候狀況。全世界范圍內(nèi) ,大量混凝土結(jié)構(gòu)都處在惡化 / 危險狀態(tài)的階段。他們應用實際的歷史非常悠久,但它們在許多案例中的表現(xiàn)是可疑的。關(guān)于混凝土中鋼筋腐蝕和保護的一般問題 ,許多作者已經(jīng)詳細闡 述過,在這里就不再敖述了。此領(lǐng)域中的大多數(shù)學術(shù)研究,對于工人來說沒有足夠?qū)I(yè)知識來處理,已經(jīng)由國家工程高校組織力量集中解決。但是只要電化學的兼容性的問題也考慮解決,這些活動將產(chǎn)生在修理耐久性方面的改進。問題太復雜,因為現(xiàn)有的知識不能夠提供一劑萬能方法來解決現(xiàn)有的問題。而且這種情況,遠遠多過一根頭發(fā)。需要知 道結(jié)構(gòu)負擔這種保護有多久,修理結(jié)構(gòu)的保護就有多好。 (5) 這篇文章的中心主題 考慮的 不是作者在幾個問題上意見的正確或者錯誤; 那是不相關(guān)的。 there are often different factors leading to corrosion of reinforcement in new an repaired concrete structures and, therefore, in the methods of protection. It is not the intent of this paper to criticize existing methods and materials for additional protection of reinforcement in repairs, or to discuss in depth the merits or demerits of one protection system against another. The author can offer no panacea, or at least express a reasonably objective view of the right and wrong way to protect reinforcement in repaired structures. Much to our regret, this is not so. The problem is too plex because the existing knowledge is not sufficient to offer a panacea. The consequence and probability of repair failure due to the premature corrosion of the reinforcing steel is not necessarily a single simplistic solution as may be appropriate for newly constructed structures. Our success in the repair field may depend on our ability to resolve the controversies, to differentiate sense from nonsense. The nonsense will be abundant, no matter what we do: this field, due to the lack of proper education, is presently well positioned to import a lot of misconceptions。28(1). [7] Spellman DL, Stratfull RF. Concrete variables and corrosion testing. Highway Research Record 1973。228:16–25. [9] Manns W, Eichler WR. The corrosionpromoting action of concrete admixtures containing thiocyanate. Betonwerk and FertigleilTechik (Wiesbaden) 1982。 steel in concrete corrodes 9 when its surface is depassivated during the manufacturing of the structure, or bees active during service. Corrosion is the electrochemical reaction, and the important factor affecting a corrosion cell is the difference in potentials of the metal. The driving force for current and corrosion is the potential development. Since the structure of steel and the contact layer of concrete are both heterogenous, the requirement for potential difference between the separate portions of the metal surface (the electrochemical inhomogeneity) is always satisfied. Concrete is a permeable material, where aggressive agents diffuse (micropermeability) through it and reach the reinforcing steel, causing its depassivation and corrosion, when water and oxygen are available. Corrosion by this mode however, is a relatively lengthy process. Concrete is a brittle material and always contains microcracks. When these microcracks bine in a work with macrocracks, the prevailing transport mechanism is not diffusion, it is the permeation of water and aggressive agents via water through the cracks to the reinforcement (macropermeability). Why enter through the closed door, when an open door is nearby? High permeability of concrete and other cementbased materials affected by cracking is truly responsible for the lack of durability. For corrosion to occur, it is necessary that both the passivating .lm on the steel is destroyed and that there exists a differential electrochemical potential within the steel–concrete natural protection of steel by the high alkalinity of cement matrix is disturbed due to the following reasons: chemical reaction between the products of hydration of cement and carbon dioxide which diffuses from the atmosphere (carbonation). Carbonation by diffusion is a very lengthy process: approximately 1 mm of concrete cover carbonates in a year. Cracks in the concrete, on the other hand, allow carbon dioxide easy permeation through the concrete cover, and carbonation occurs rapidly. level. Chloride ions ma