【摘要】函數(shù)零點問題一、基礎(chǔ)知識回顧1.函數(shù)零點概念對函數(shù),把使的實數(shù)叫做函數(shù)的零點.同時我們還要知道函數(shù)零點、方程的根和函數(shù)圖像的關(guān)系:函數(shù)有零點方程有實數(shù)根
2025-03-24 12:18
【摘要】函數(shù)的零點【教學(xué)目標(biāo)】1、了解函數(shù)零點的概念及函數(shù)零點的等價描述;2、能利用二次函數(shù)的圖象與判別式的符號,判斷一元二次方程根的存在性及根的個數(shù);3、理解判斷函數(shù)零點存在性的結(jié)論并能研究簡單的函數(shù)零點的存在性問題;4、體現(xiàn)、感受并理解方程和函數(shù)圖象在零點問題中的應(yīng)用,滲透數(shù)形結(jié)合思想,運用數(shù)形結(jié)合來研究和解決數(shù)學(xué)問題,并能應(yīng)用從特殊到一般的數(shù)學(xué)方法去探索和認(rèn)識數(shù)學(xué)知識。
2025-04-16 23:40
【摘要】方程的根與函數(shù)的零點一、選擇題1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應(yīng)值表x1234567f(x)136.13615.552-210.88-88-6411.238由表可知函數(shù)f(x)存在零點的區(qū)間有(
2024-12-07 21:18
【摘要】方程的根與函數(shù)的零點課標(biāo)分析【課標(biāo)分析】必修一第三章“函數(shù)與方程”是高中數(shù)學(xué)的新增內(nèi)容,是近年來高考關(guān)注的熱點.本章函數(shù)與方程是中學(xué)數(shù)學(xué)的核心概念,并且與其他知識具有廣泛的聯(lián)系性,地位重要。本節(jié)課方程的根與函數(shù)的零點是整章內(nèi)容的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。本節(jié)內(nèi)容,學(xué)生將學(xué)習(xí)利用函數(shù)的
2024-11-28 21:40
【摘要】1《方程的根與函數(shù)的零點》的教學(xué)設(shè)計湖北省黃岡市團風(fēng)中學(xué)胡建平教材分析本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實驗教課書數(shù)學(xué)I必修本(A版)》的第三章的根與函數(shù)的的零點。函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,既是初等數(shù)學(xué)的基礎(chǔ),又是出等數(shù)學(xué)與高等數(shù)學(xué)的連接紐帶。在現(xiàn)實生活實踐中,函數(shù)與方程都有著十分的應(yīng)用,在注重理論與實踐相結(jié)合的今天,
2024-11-21 04:35
【摘要】我們先看下面幾個具體問題:(4)如果一個正方形場地的面積為S,那么這個正方形的邊長___________(1)如果張紅買了每千克1元的蔬菜W千克,那么她需要支付__________P=W元(2)如果正方形的邊長為a,那么正方形的面積_____(3)如果立方體的邊長為a,那么立方體的體積
2024-11-17 15:21
【摘要】一:隨機事件的概率(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件(certainevent),簡稱必然事件.(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件(impossibleevent),簡稱不可能事件.(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件.(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的
2025-04-04 05:11
【摘要】高中數(shù)學(xué)必修一函數(shù)試題一、選擇題:1、若,則()A、2B、4C、D、102、對于函數(shù),以下說法正確的有()①是的函數(shù);②對于不同的的值也不同;③表示當(dāng)時函數(shù)的值,是一個常量;④一定可以用一個具體的式子表示出來。A、1個
2025-06-18 13:53
【摘要】冪函數(shù)一、冪函數(shù)定義:對于形如:,定義說明:1、定義具有嚴(yán)格性,系數(shù)必須是1,底數(shù)必須是2、取值是R.3、《考試標(biāo)準(zhǔn)》要求掌握α=1、2、3、?、-1五種情況習(xí)題:定義應(yīng)用1、下列函數(shù)是冪函數(shù)的是______①②③④⑤2、若冪函數(shù)的圖像過點,則函數(shù)的解析式為______.3、已知函數(shù)是冪函數(shù),且經(jīng)過原點,則實
2025-04-17 12:39
【摘要】高中數(shù)學(xué)必修1知識點第一章集合與函數(shù)概念〖〗集合【】集合的含義與表示(1)集合的概念集合中的元素具有確定性、互異性和無序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實數(shù)集.(3)集合與元素間的關(guān)系對象與集合的關(guān)系是,或者,兩者必居其一.(4)集合的表示法①自然語言法:用文字?jǐn)⑹?/span>
2025-07-23 07:49
【摘要】高中數(shù)學(xué)函數(shù)練習(xí)題1、下列函數(shù)中,值域是(0,+∞)的函數(shù)是A.B.C.D.2、已知(是常數(shù)),在上有最大值3,那么在上的最小值是 A. B. C. D.3、已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是A、[1,+∞)B、[0,
2025-04-04 05:07
【摘要】高中數(shù)學(xué)必修2第一章立體幾何初步1、柱、錐、臺、球的結(jié)構(gòu)特征(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱幾何特征:兩底面是對應(yīng)
2025-04-04 02:41
【摘要】高中數(shù)學(xué)函數(shù)知識點梳理1..函數(shù)的單調(diào)性(1)設(shè)那么上是增函數(shù);上是減函數(shù).(2)設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).注:如果函數(shù)和都是減函數(shù),則在公共定義域內(nèi),和函數(shù)也是減函數(shù);如果函數(shù)和在其對應(yīng)的定義域上都是減函數(shù),則復(fù)合函數(shù)是增函數(shù).2.奇偶函數(shù)的圖象特征奇函數(shù)的圖象關(guān)于原點對稱,偶函數(shù)的圖象關(guān)于y軸對稱;反過來,如果一個函數(shù)的圖
【摘要】高一數(shù)學(xué)必修1知識網(wǎng)絡(luò)集合函數(shù)附:一、函數(shù)的定義域的常用求法:1、分式的分母不等于零;2、偶次方根的被開方數(shù)大于等于零;3、對數(shù)的真數(shù)大于零;4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)中;余切函數(shù)中;6、如果函數(shù)是由實際意義確定的解析式,應(yīng)依據(jù)自變量的實際意義確定其取值
2025-08-23 21:37
【摘要】高中數(shù)學(xué)函數(shù)知識點總結(jié)1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。2進行集合的交、并、補運算時,不要忘記集合本身和空集的特殊情況注重借助于數(shù)軸和文氏圖解集合問題??占且磺屑系淖蛹?,是一切非空集合的真子集。3.注意下列性質(zhì):要知道它的來歷:若B為A的子集,則對于元素a1
2025-08-05 18:38