freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

證明不等式方法探析(存儲(chǔ)版)

  

【正文】 綜合法是由因?qū)Ч?,即是由已知條件和已知的不等式出發(fā),推導(dǎo)出所要證明的不等式;分析法是執(zhí)果索因,即是要逐步找出使結(jié)論成立的充分條件或者充要條件,:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各種不等式;第二,要善于利用題中的隱含條件;第三,、反證法:,從原不等式的結(jié)論的反面出發(fā),通過(guò)合理的邏輯推理導(dǎo)出矛盾,、放縮法:要證ab,又已知(或易證)ac,則只要證cb,這是利用不等式的傳遞性,將原不等式里的某些項(xiàng)適當(dāng)?shù)姆糯蠡蚩s小,: ①添加或舍去一些項(xiàng),如:a2+1a;n(n+1)n;②將分子或分母放大(或縮小);③利用基本不等式,如:log3lg5(n(n+1)lg3+lg522)2=lglg=lg4; n+(n+1);④利用常用結(jié)論:k+1k=1k+1+=1k11k1k12k1k;1k(k+1)1k+11k1k+11k1k(k1)1k;=(程度大)1k1=(k1)(k+1)=2k1();(程度?。┪濉Q元法:換元的目的就是減少不等式中變量,以使問(wèn)題化難為易,化繁為簡(jiǎn),:已知x2+y2=a2,可設(shè)x=acosq,y=asinq;已知x2+y2163。故 180。180。188。條件,即有,0(1a)a≤.24232。180。165。6 故原命題得證.(6)用“雙十字法”證明不等式 已知x,y0并且x+y=1 求證:x2+3xy+2y22xy32x221xy11y24x+21y+2證:因 x2+3xy+2y22xy3=(x+2y)(x+y)2xy3第6頁(yè)(共13頁(yè))數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級(jí)年論文(設(shè)計(jì))=(x+2y3)(x+y+1)0 類似的,2x221xy11y24x+21y+2=(2x+y2)(x11y1)0 故結(jié)論成立.(7)用恒等變形推導(dǎo)[2] 求證:對(duì)于任意角度q,都有5+8cosq+4cos2q+cos3q≥0證:5+8cosq+4cos2q+cos3q=5+8cosq+4(2cos2q1)+(4cos3q3cosq)=1+5cosq+8cos2q+4cos3q=(1+cosq)(4cos2q+4cosq+1)=(1+cosq)(2cosq+1)2179。9第5頁(yè)(共13頁(yè))1a1b1c數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級(jí)年論文(設(shè)計(jì))分析 證法較多,但由a+b+c=1與++之間的聯(lián)系,:由算術(shù)平均數(shù)和調(diào)和平均的關(guān)系可知a+b+c3 179。0)22證:考慮a與b都去特殊值,既當(dāng)a=b=時(shí)有(2+)(2+)=4則a2+1b2+1(a2+1)(b2+1)(ab1)2+111(a+)(b+)=== abababab33(+x2)2+1(+x2)2+125=44=.114x244故原不等式得證.(2)利用分子有理化證明不等式分母有理化是初中數(shù)學(xué)教材中重要知識(shí),它有著廣泛的應(yīng)用,而分子有理化也隱含于各種習(xí)題之中,它不但有各種廣泛的作用,[1] 求證131212+11 \113+12113+12,1211=112+11, 112+11即 1312四種“平均”之間的關(guān)系,既調(diào)和平均數(shù)H(a)≤幾何平均數(shù)G(a)≤第4頁(yè)(共13頁(yè))數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級(jí)年論文(設(shè)計(jì))算數(shù)平均數(shù)A(a)≤平方平均數(shù)Q(a).寫得再詳細(xì)些就是:若a1,a2,a3188。2x3+x2分析 用相減比較法證明AB[f(x)](f(x)g(x),其中f(x),g(x)同號(hào)),或變形為多個(gè)因子的[f(x)]2+[g(x)]乘積、: Q2x42x3x2+1=2x3(x1)(x1)(x+1)=(x1)(2x3x1)=(x1)(2x32x+x1)13=2(x1)2[(x+)2+]442x42x3x2+1179。正解:x=y得23 ≤c≤23,故猜想c= 23,下證不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。1構(gòu)造函數(shù)法例11:證明不等式:x12x <x2(x≠0)證明:設(shè)f(x)=x12xx2(x≠0)∵f(x)=x12x+x2x2x2x1+x2=x12x[1(12x)]+x2=x12xx+x2=f(x)∴f(x)的圖像表示y軸對(duì)稱∵當(dāng)x>0時(shí),12x<0,故f(x)<0∴當(dāng)x<0時(shí),據(jù)圖像的對(duì)稱性知f(x)<0∴當(dāng)x≠0時(shí),恒有f(x)<0 即x12x<x2(x≠0)練習(xí)9:已知a>b,2b>a+c,求證:bb2ab<a<b+b2ab2構(gòu)造圖形法例12:若f(x)=1+x2,a≠b,則|f(x)f(b)|< |ab|分析:由1+x2 的結(jié)構(gòu)可知這是直角坐標(biāo)平面上兩點(diǎn)A(1,x),0(0,0)的距離即 1+x2 =(10)2+(x0)2于是如下圖,設(shè)A(1,a),B(1,b)則0A= 1+a2 0B=1+b2|AB|=|ab|又0A||0B<|AB|∴|f(a)f(b)|<|ab|練習(xí)10:設(shè)a≥c,b≥c,c≥0,求證 c(ac)+c(bc)≤ab10添項(xiàng)法某些不等式的證明若能優(yōu)先考慮“添項(xiàng)”技巧,能得到快速求解的效果。例8:已知 x1=y+12=z23,求證:x2+y2+z2≥4314證明:設(shè)x1=y+12=z23=k于是x=k+1,y=zk1,z=3k+2把上式代入x2+y2+z2=(k+1)2(2k1)2+(3k+2)2=14(k+514)2+4314≥43147反證法有些不等式從正面證如果不好說(shuō)清楚,可以考慮反證法,即先否定結(jié)論不成立,然后依據(jù)已知條件以及有關(guān)的定義、定理、公理,逐步推導(dǎo)出與定義、定理、公理或已知條件等相矛盾或自相矛盾的結(jié)論,從而肯定原有結(jié)論是正確的,凡是“至少”、“唯一”或含有否定詞的命題,適宜用反證法。證明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2綜上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2練習(xí)5:已知:a<2,求證:loga(a+1)<16換元法換元法是許多實(shí)際問(wèn)題解決中可以起到化難為易,化繁為簡(jiǎn)的作用,有些問(wèn)題直接證明較為困難,若通過(guò)換元的思想與方法去解就很方便,常用于條件不等式的證明,常見的是三角換元。1比較法比較法是證明不等式的最基本方法,具體有“作差”比較和“作商”比較兩種。、利用中值定理:,它們都是寫成等式形式,例如f(b)f(a)=f162。n1,使得ak163。f,對(duì)F求導(dǎo)數(shù),axa1+a2+L+an179。求f(x)=(x1x2Lxn)在條件x1+x2+L+xn=(x)=(x1x2Lxn)+l(x1+x2+L+xna).n1nF對(duì)xk求偏導(dǎo)數(shù)Fx39。,165。(229。n163。167。例如是超越不等式。第一篇:證明不等式方法探析167。只要有一邊是超越式,就稱為超越不等式。< 中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。km)成立可推出P(k+1)成立,則P(n)對(duì)所有不超過(guò)m的n都成立.(3)、(反向歸納法)設(shè)有無(wú)窮多個(gè)自然數(shù)n(例如n=2),使得P(n)成立,且從P(k+1)成立可推出P(k)成立,則P(n)對(duì)所有n成立.(4)、若P(1)成立,且P(n)對(duì)所有滿足1163。1nx1x239。k=1則f在[165。0,i=1,2,L,不等式:An=n證明:AG不等式219。baf變成F(x)=242。k163。=1j=k+1n即有 Gn163。因此,中值定理的實(shí)質(zhì)是由不等式的形式揭示出來(lái)的.第二篇:證明不等式方法不等式的證明是高中數(shù)學(xué)的一個(gè)難點(diǎn),題型廣泛,涉及面廣,證法靈活,錯(cuò)法多種多樣,本節(jié)通這一些實(shí)例,歸納整理證明不等式時(shí)常用的方法和技巧。例6:已知a、b、c、d都是正數(shù)求證: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2分析:觀察式子特點(diǎn),若將4個(gè)分式商為同分母,問(wèn)題可解決,要商同分母除通分外,還可用放縮法,但通分太麻煩,故用放編法。cos2θ=sinθ
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1