【摘要】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2025-10-28 13:38
【摘要】第一篇:怎樣用換元法證明不等式 怎樣用換元法證明不等式 陸世永 我們知道,無論在中學,還是在大學,不等式的證明都是一個難點。人們在證明不等式時創(chuàng)造了許多方法,其中有換元法。下面我們探索怎樣用換元...
2025-10-19 03:59
【摘要】第一篇:不等式證明之放縮法 不等式證明之放縮法 放縮法的定義 所謂放縮法,即要證明不等式A (1)放縮的方向要一致。 (2)放與縮要適度。 (3)很多時候只對數(shù)列的一部分進行放縮法,保留一...
2025-10-19 23:26
【摘要】不等式的證明松北高級中學吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2025-11-01 05:07
【摘要】第一篇:2014年數(shù)學高考專題--用構造局部不等式法證明不等式[模版] 2014年數(shù)學高考專題--用構造局部不等式法證明不等式 有些不等式的證明,若從整體上考慮難以下手,可構造若干個結構完全相同的...
2025-10-17 22:06
【摘要】不等式的證明(4)換元法復習:分析法:一、三角換元注意點:角的范圍與半徑的范圍二、代數(shù)換元代數(shù)換元:主元;均值代換練習小結:
2025-11-02 02:53
【摘要】第一篇:構造函數(shù)證明不等式 構造函數(shù)證明不等式 構造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(shù)(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2025-10-22 14:46
【摘要】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2025-10-27 22:00
【摘要】第一篇:不等式證明1 本資料從網(wǎng)上收集整理 難點18不等式的證明策略 不等式的證明,方法靈活多樣,,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學中的一個難點,本難點著重培養(yǎng)考生數(shù)學式的...
2025-10-30 22:00
【摘要】第一篇:排序不等式及證明 四、排序不等式 【】 (一)概念9:設有兩組實數(shù) a1,a2,×××,an(1)b1,b2,×××,bn(2)滿足 a1£a2£×××£an(3)b1£b2£×××...
2025-10-28 03:16
【摘要】第一篇:單調(diào)性證明不等式 單調(diào)性證明不等式 x證明e≥x+:記K(x)=e-x-1,則K′(x)=e-1,當x∈(0,1)時,K′(x)>0,因此K(x) 在[0,1]上是增函數(shù),故K(x)≥K...
2025-10-21 23:20
【摘要】不等式的證明復習?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設要證明的命題不成立,以此為出發(fā)點,結合已知條件,應用公理、定義、定理、性質(zhì)等,進行正確的推理,得到矛盾,說明假設不正確,從而間接說明原命題成立的方法。1.xy02.1x12.yxy
2025-08-01 17:41
【摘要】第一篇:不等式證明經(jīng)典[精選] 金牌師資,笑傲高考 2013年數(shù)學VIP講義 【例1】設a,b∈R,求證:a2+b2≥ab+a+b-1。 【例2】已知0 【例3】設A=a+d,B=b+c,a...
【摘要】第一篇:不等式的證明(推薦) 不等式的基本性質(zhì) 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
【摘要】第一篇:利用導數(shù)證明不等式 利用導數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設f(x)=x-lnx。x?[0,+¥)??紤]到f(0)=0,要證不等式變?yōu)椋簒0時,f(x)f...
2025-10-18 18:46