freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)-等腰三角形教學(xué)設(shè)計(jì)(存儲(chǔ)版)

  

【正文】 成立.知識(shí)點(diǎn)七:直角三角形性質(zhì)定理定理內(nèi)容:在直角三角形中,如果有一個(gè)銳角是30176?!螩AB=30176。上面的證明過(guò)程是否正確?如果正確,請(qǐng)寫(xiě)出每一步的推理依據(jù);如果不正確,請(qǐng)指出關(guān)鍵錯(cuò)在哪一步,寫(xiě)出你認(rèn)為正確的證明過(guò)程。而且這一結(jié)論在圖形發(fā)生變化后仍然成立?!唷螧=180176?!敬鸢浮俊連E=BA∴∠2=∠BAE∵CD=CA∴∠1=∠CAD∵∠1+∠CAD+∠C=180176。【變式2】在△ABC中,AB=AC,D在BC上,E在AC上,且AD=AE,∠BAD=30176。總結(jié)升華:對(duì)于此類題目在進(jìn)行分類討論時(shí),必須運(yùn)用三角形的三邊關(guān)系來(lái)驗(yàn)證是否能構(gòu)成三角形舉一反三:【變式1】當(dāng)頂角或底角不能確定時(shí),必須進(jìn)行分類討論等腰三角形的一個(gè)角是另一個(gè)角的4倍,求它的各個(gè)內(nèi)角的度數(shù)【答案】(1)當(dāng)?shù)捉鞘琼斀堑?倍時(shí),設(shè)頂角為x,則底角為4x,∴ 4x+4x+x=180176?!?4x=120176。30176。25176?!螦BD=65176。=65176。故三角形各內(nèi)角為:65176。176。2=65176。故∠B的大小為65176。總結(jié)升華:在三角形中,利用“等角對(duì)等邊”證明線段相等,是一種常用的方法。+60176。CD,CE三等分∠ACB,CD⊥AB(如圖所示)。∴△BCE是等邊三角形,∴EC=EB∴CE=EA=EB 學(xué)習(xí)成果測(cè)評(píng) 基礎(chǔ)達(dá)標(biāo):一、填空:等腰三角形的的兩邊長(zhǎng)為2cm和5cm,則該等腰三角形的周長(zhǎng)為_(kāi)_____cm。二、選擇題:3:3,則這個(gè)三角形是()176。70176。45176。等腰三角形一腰上的中線將等腰三角形的周長(zhǎng)分成8cm和10cm的兩部分,求該等腰三角形的各邊長(zhǎng)。因?yàn)槿羝渲幸贿吺侵苯沁?,另一邊是斜邊,則可用(HL)定理證全等。13或11(3cm既能為腰長(zhǎng),又能為底邊長(zhǎng)(5+5>3+3>5),∴周長(zhǎng)為3+5+5=13(cm)或3+3+5=11(cm)。;45176。是銳角,即可以是頂角,也可以是底角。點(diǎn)撥:本題綜合考查三角形全等識(shí)別法和等腰三角形性質(zhì)定理。(2)分兩種情況:①若已知的角為頂角的外角,則頂角=180176。2=20176。∵D是BC邊上的中點(diǎn),∴BD=CD又∵BF=CE,由(HL)全等識(shí)別法可知△BFD≌△CED。理由如下:∵AB=BC=AC,CD=CE=DE∴△ABC和△ECD都是正三角形∴∠ACB=∠ECD=60176。求∠CAD的度數(shù)。同理可得∠ADE=40176。(40176。∠ABC)247?!螦BC∠BAC)247?!螪AC)247。+40176。2+(180176。2=70176。學(xué)情分析學(xué)生在本節(jié)課學(xué)習(xí)之前,已經(jīng)知道了全等三角形和軸對(duì)稱相關(guān)知識(shí),那么等腰三角形又有怎樣性質(zhì)呢?鑒于八年級(jí)學(xué)生的年齡、心理特點(diǎn)及認(rèn)知水平,有進(jìn)一步探究新知的愿望。教學(xué)方法:本課立足于學(xué)生的“學(xué)”,采用小組合作探究,師生互動(dòng),突出“學(xué)生是學(xué)習(xí)的主體”,讓他們?cè)诟惺苤R(shí)的過(guò)程中,提高他們的知識(shí)運(yùn)用能力?!逜D⊥BC∴∠ADB =∠ADC=90176。.等邊三角形性質(zhì)的證明:(學(xué)生在練習(xí)本完成后,再用課件展示證明過(guò)程)例題:已知:在△ABC中,AB=AC,BD,CE分別為∠ABC,∠ACB的平分線。()等腰三角形的角平分線、中線和高互相重合。本節(jié)內(nèi)容既是前面知識(shí)的深化和應(yīng)用,又是今后學(xué)習(xí)等邊三角形的預(yù)備知識(shí),還是證明角相等、線段相等及兩直線互相垂直的重要依據(jù),具有承上啟下的重要作用。情感、態(tài)度、價(jià)值觀目標(biāo):培養(yǎng)學(xué)生小組合作意識(shí),使學(xué)生理解轉(zhuǎn)化的數(shù)學(xué)思想,培養(yǎng)學(xué)生變通的能力。組內(nèi)交流,問(wèn)題反饋 已知:在△ABC中,AB=AC 求證:∠B=∠CABC教師引導(dǎo)學(xué)生分析回答:要證兩個(gè)角相等可以轉(zhuǎn)化前面所學(xué)過(guò)的三角形全等,而圖形只有一個(gè)三角形,需要如何添加輔助線使它轉(zhuǎn)化為兩個(gè)三角形?活動(dòng)2: 小組合作思考添加輔助線的方法,通過(guò)剛才的折疊等腰三角形的實(shí)驗(yàn),學(xué)生很容易想到輔助線,想到兩種方法:作頂角的平分線AD或作BC邊的作中線AD,可找兩位學(xué)生板演,教師巡視,給予訂正。如果重錘過(guò)點(diǎn)A,那么這根木條就是水平的。則它的另兩個(gè)角的度數(shù)為 教師提出討論問(wèn)題,引導(dǎo)學(xué)生思考可能的情況,由學(xué)生總結(jié)情況和相應(yīng)結(jié)果,教師從而歸納分類討論的數(shù)學(xué)思想(3)等腰三角形的腰長(zhǎng)為3cm,底邊為4cm,則它的周長(zhǎng)等于 變式1:等腰三角形的一邊為3cm,另一邊為4cm,則它的周長(zhǎng)等于 變式2:等腰三角形的一邊為3cm,另一邊為8cm,則它的周長(zhǎng)等于設(shè)計(jì)意圖:運(yùn)用變式練習(xí),及時(shí)鞏固所學(xué)知識(shí),了解學(xué)生學(xué)習(xí)效果,增強(qiáng)學(xué)生應(yīng)用知識(shí)的能力,培養(yǎng)學(xué)生分類討論的思想。(簡(jiǎn)寫(xiě)為“等邊對(duì)等角”)性質(zhì)3:等腰三角形的頂角的平分線、底邊上的中線、底邊上的高線重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸。 設(shè)計(jì)意圖:培養(yǎng)學(xué)生正確應(yīng)用所學(xué)的知識(shí)的應(yīng)用能力,增強(qiáng)應(yīng)用意識(shí),參與意識(shí),鞏固所學(xué)的等 腰三角形的性質(zhì).活動(dòng)4: 變式訓(xùn)練 變式訓(xùn)練(1)已知等腰三角形的一個(gè)內(nèi)角為80176。在這個(gè)測(cè)平儀中,AB=AC,BC邊的中點(diǎn)D處掛了一個(gè)重錘。學(xué)生觀察并思考發(fā)表自已的看法學(xué)生回答:∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD,AD=AD,AB=AC 師生歸納: 性質(zhì)1:等腰三角形是軸對(duì)稱圖形,教師說(shuō)明:對(duì)稱軸是一條直線,而三角形的中線是線段,因此不能說(shuō)等腰三角形底邊上的中線是它的對(duì)稱軸。過(guò)程與方法目標(biāo):①讓學(xué)生體驗(yàn)等腰三角形是一個(gè)軸對(duì)稱性圖形。不足之處的是,習(xí)題練習(xí)有限,未設(shè)置限時(shí)小測(cè)等等第五篇:等腰三角形教學(xué)設(shè)計(jì)《等腰三角形》教學(xué)設(shè)計(jì)[教學(xué)內(nèi)容]:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(魯教版)七年級(jí)數(shù)學(xué)上冊(cè)第二章 第三節(jié)《等腰三角形》第一課時(shí),課本49頁(yè)~51頁(yè)。()等腰三角形的頂角平分線一定垂直底邊。幾何語(yǔ)言:在△ABC 中,∵AB=AC , AD⊥BC(已知)∴BD=DC , ∠1=∠2(等腰三角形三線合一)在學(xué)生掌握了等腰三角形的有關(guān)概念和性質(zhì)之后,引出等邊三角形的教學(xué)。在△ABD與△ACD中:BD=DC(作圖)AD=AD(公共邊)∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形對(duì)應(yīng)角相等)方法二:作頂角∠BAC的平分線AD。教學(xué)重難點(diǎn):教學(xué)重點(diǎn):探索等腰三角形“等邊對(duì)等角”和“三線合一”的性質(zhì)。是在學(xué)習(xí)了軸對(duì)稱之后編排的,是軸對(duì)稱知識(shí)的延伸和應(yīng)用。40176?!玻?80176。+∠ACB247。2=20176。2∠BAC247?;?15176。于是∠CAD=180176。與h之間又有怎樣的關(guān)系? 16(2)若不用上述信息,你能用其他方法證明猜想結(jié)論嗎?答案與解析:1.(1)如圖,當(dāng)C、D兩點(diǎn)在線段AB的同側(cè)時(shí),∵C、D兩點(diǎn)在線段AB的垂直平分線上,∴CA=CB,△CAB是等腰三角形,又CE⊥AB,∴CE是∠ACB的角平分線,∴∠ACE=∠BCE,而∠ACB=50176。能力提升:、D兩點(diǎn)在線段AB的中垂線上,且∠ACB=50176。點(diǎn)撥:本題恰又是一個(gè)易錯(cuò)題,甲、乙兩同學(xué)的錯(cuò)誤常出現(xiàn)在日常學(xué)習(xí)中,需引起注意?!摺鰾DE是等邊三角形∴BE=BD,∠DBC=60176。所以頂角=180176。、80176?!嗳切螢榈妊苯侨切?。50176。等邊5。12(2cm不能為腰長(zhǎng),只能為底邊長(zhǎng)(2+2<5),所以周長(zhǎng)為2+5+5=12(cm)。因?yàn)槿魞蛇叾际侵苯沁?,則用(SAS)全等識(shí)別法就可以證它們?nèi)?。?)等腰三角形的一個(gè)外角為100176。68176。52176。等腰三角形的一個(gè)角是80176?!郃B=2BC(2)∵∠A=∠1=30176。又∵∠DCA=60176?!唷?+∠2=60176。思路點(diǎn)撥: 因?yàn)镈E=DF+FE,即結(jié)論為BD+EC=DF+FE,分別證明BD=DF,CE=FE即可,于是運(yùn)用“在同一三角形中,等角對(duì)等邊”易證結(jié)論成立。)247。50176?;?15176。)247。∠ABD=90176。圖1(2)當(dāng)高與另一腰的夾角為250時(shí),①如圖2,高在△ABC內(nèi)部時(shí),當(dāng)∠ABD=25176?!唷螩=90176。80176。(2)當(dāng)頂角是底角的4倍時(shí),設(shè)底角為x,則頂角為4x,∴ x+x+4x=180176。解析:(1)因?yàn)?+8>10,10+10>8,則在這兩種情況下都能構(gòu)成三角形;當(dāng)腰長(zhǎng)為8時(shí),周長(zhǎng)為8+8+10=26;當(dāng)腰長(zhǎng)為10時(shí),周長(zhǎng)為10+10+8=28;故這個(gè)三角形的周長(zhǎng)為26cm或28cm。-61176。舉一反三:【變式1】如圖,D、E在△ABC的邊BC上,且BE=BA,CD=CA,若∠BAC=122176。思路點(diǎn)撥: 解該題的關(guān)鍵是要找到∠2和∠1之間的關(guān)系,顯然∠2=∠1+∠C,只要再找出∠C與∠2的關(guān)系問(wèn)題就好解決了,而∠C=∠B,所以把問(wèn)題轉(zhuǎn)化為欲找出∠2與∠B之間有什么關(guān)系,變成△ABD的角之間的關(guān)系,問(wèn)題就容易的多了。(1)請(qǐng)猜一猜:圖4中∠BQM等于多少度?(2)若M、N兩點(diǎn)分別在線段BC、CA的延長(zhǎng)線上,其它條件下不變,如圖5所示,(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)加以證明;如果不成立,請(qǐng)說(shuō)明理由。請(qǐng)你先閱讀下面的證明過(guò)程。(2)在三角形的中線問(wèn)題上,我們常將中線延長(zhǎng)一倍,這樣添輔助線有助于我們解決有關(guān)中線的問(wèn)題。于是∠A=60176。二、知識(shí)要點(diǎn)梳理知識(shí)點(diǎn)一:等腰三角形、腰、底邊有兩邊相等的三角形叫等腰三角形,其中相等的兩條邊叫腰,第三條邊叫底邊,兩腰的夾角叫頂角,底邊和腰的夾角叫底角如圖所示,在△ABC中,AB=AC,則它叫等腰三角形,其中AB、AC為腰,BC為底邊,∠A是頂角,∠B、∠C是底角.知識(shí)點(diǎn)二:等腰三角形的性質(zhì)性質(zhì)1:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱“等邊對(duì)等角”).性質(zhì)2:等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合(簡(jiǎn)稱“三線合一”).這兩個(gè)性質(zhì)證明如下:在△ABC中,AB=AC,如圖所示.作底邊BC的高AD,則有∴ Rt△ABD≌Rt△ACD.∴ ∠B=∠C,∠1=∠2.BD=CD.于是性質(zhì)性質(zhì)2均得證.說(shuō)明:(1)①等腰三角形的性質(zhì)1用符號(hào)表示為:∵AB=AC,∴∠B=∠C;②性質(zhì)1是等腰三角形的一條重要(主要)性質(zhì),也是今后我們證明角相等的又一個(gè)重要依據(jù).(2)①性質(zhì)2實(shí)質(zhì)包含三條性質(zhì),符號(hào)表示為:∵ AB=AC,AD⊥BC,∠1=∠2,∴ BD=CD;或∵ AB=AC,BD=CD,∠l=∠2,∴ AD⊥BC.②性質(zhì)2的用途更為廣泛,可以用來(lái)證明線段相等,角相等,垂直關(guān)系等.(3)等腰三角形是軸對(duì)稱圖形,底邊上高(頂角平分線或底邊中線)所在直線是它的對(duì)稱軸,通常情況只有一條對(duì)稱軸.知識(shí)點(diǎn)三:等腰三角形的判定定理定理內(nèi)容及證明如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱“等角對(duì)等邊”),如圖所示.證明:在△ABC中,∠B=∠C,作AD⊥BC于D.則所以△ABD≌△ACD(AAS).所以,AB=AC.注意:①本定理的符號(hào)表示為:在△ABC中,∵∠B=∠C,∴AB=AC.②本定理可以判定一個(gè)三角形是等腰三角形,同時(shí)也是今后證明兩條線段相等的重要依據(jù).另外,等腰三角形的性質(zhì)和判定條件和結(jié)論正好相反,要注意區(qū)分,不要混淆. 知識(shí)點(diǎn)四:等邊三角形等邊三角形定義:三邊都相等的三角形叫等邊三角形如圖所示.注意:①由定義可知,等邊三角形是一種特殊的等腰三角形.也就是說(shuō)等腰三角形包括等邊三角形.②等邊三角形具有等腰三角形的一切性質(zhì).知識(shí)點(diǎn)五:等邊三角形的性質(zhì)等邊三角形的性質(zhì):等邊三角形三個(gè)內(nèi)角都相等,并且每一個(gè)內(nèi)角都等于60176。教學(xué)評(píng)價(jià)優(yōu)
點(diǎn)擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1