freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx北師大版數(shù)學(xué)七年級(jí)下冊(cè)43探索三角形全等的條件ppt教學(xué)課件(存儲(chǔ)版)

2025-01-16 23:01上一頁面

下一頁面
  

【正文】 ,根據(jù)等式的性質(zhì)得出 DE= BF,利用 “ SAS” 即得出結(jié)論 . 解 因?yàn)?AE∥ CF,所以 ∠ AED= ∠ CFB. 因?yàn)?DF= BE, 所以 DF+ EF= BE+ EF,即 DE= BF. 在△ ADE和 △ CBF中, AE= CF, ∠ AED= ∠ CFB, DE= BF, 所以△ ADE≌ △ CBF (SAS). 舉一反三 1. 如圖 4- 3- 9所示 , AB= AD, AC= AE, ∠ BAD= ∠ CAE, 試說明 BC= DE. 解:因?yàn)?∠ BAD= ∠ CAE, 所以 ∠ BAD+ ∠ DAC= ∠ CAE+∠ DAC, 即 ∠ BAC= ∠ DAE. 在 △ ABC和 △ ADE中 , AB= AD,∠ BAC= ∠ DAE, AC= AE, 所以 △ ABC≌ △ ADE. 所以 BC= DE. 2. 如圖 4- 3- 10, △ ABC與 △ CDE均是等腰直角三角形 , ∠ ACB= ∠ DCE= 90176。 A 7. (6分 )如圖 KT4- 3- 6, △ ABC中 , AB= AC,AD⊥ BC, CE⊥ AB, AE= : (1)△ AEF≌ △ CEB; 解: (1)因?yàn)?AD⊥ BC, CE⊥ AB, 所以 ∠ BCE+ ∠ CFD= 90176。 , BE= CD, 所以 △ ABE≌ △ ACD (AAS). 所以 AB= AC. 2. 已知 AB= AD, ∠ BAD= ∠ CAE, 請(qǐng)?zhí)砑右粋€(gè)條件: , 使 △ ABC≌ △ ADE,并說明理由 . ∠ C= ∠ E(條件不唯一 )理由:因?yàn)?∠ BAD= ∠ CAE, 所以 ∠ BAD+ ∠ CAD= ∠ CAE+ ∠ CAD, 即 ∠ BAC= ∠ DAE. 在 △ ABC與 △ ADE中 , ∠ C= ∠ E, AB= AD, ∠ BAC= ∠ DAE, 所以 △ ABC≌ △ ADE (AAS). 3. 已知:如圖 4- 3- 19, 在 △ ABC中 , AB= AC, D為 BC上的一點(diǎn) , DA平分 ∠ EDC, 且 ∠ E= ∠ B. 說明△ ADE≌ △ ADC的理由 . 解:因?yàn)?DA平分 ∠ EDC, 所以 ∠ ADE= ∠ ADC. 因?yàn)?AB= AC, 所以 ∠ B= ∠ C. 又因?yàn)?∠ E= ∠ B, 所以 ∠ E= ∠ C. 在 △ ADE和 △ ADC中 , ∠ E= ∠ C, ∠ ADE= ∠ ADC, AD= AD, 所以 △ ADE≌ △ ADC (AAS) 新知 5 三角形的穩(wěn)定性 由于一個(gè)三角形的三邊的長度確定了 , 那么這個(gè)三角形的形狀和大小就確定了 , 故三角形具有穩(wěn)定性 , 這是三角形所特有的性質(zhì) . 【 例 5】 如圖 4- 3- 20, 木工師傅在做完門框后 , 為防止變形常常像圖中那樣釘上兩條斜拉的木板條 (即AB, CD), 這樣做的數(shù)學(xué)道理是什么 ? 解析 本題是三角形的穩(wěn)定 性在生活中的具體應(yīng)用 , 實(shí)際生活中將多邊形轉(zhuǎn)化為 三角形都是為了利用三角形 的穩(wěn)定性 . 解 三角形具有穩(wěn)定性 . 舉一反三 4-
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1