【摘要】第5課時等差數(shù)列的應用、通項公式、前n項和公式的性質(zhì).、通項公式、前n項和公式的性質(zhì)解決相關(guān)的數(shù)列問題.前面我們共同學習了等差數(shù)列的定義、通項公式、前n項和公式等基本概念,理解了累加法、歸納法、倒序相加法等,今天我們將共同探究等差數(shù)列的定義、通項公式、前n項和公式的相關(guān)性質(zhì)及其應用,這些性質(zhì)在數(shù)列中有著重要
2024-12-08 02:37
【摘要】等差數(shù)列的通項公式教學目標:1.掌握“疊加法”求等差數(shù)列通項公式的方法;2.掌握等差數(shù)列的通項公式,并能用公式解決一些簡單的問題;3.理解等差數(shù)列的性質(zhì),能熟練運用等差數(shù)列的性質(zhì)解決有關(guān)問題.教學重點:等差數(shù)列的通項公式,關(guān)鍵對通項公式含義的理解.教學難點:等差數(shù)列的性質(zhì)和應用.教學方法:
2024-11-20 01:05
【摘要】課題:等差數(shù)列的通項公式班級:姓名:學號:第學習小組【學習目標】:1、會用“疊加法”求等差數(shù)列通項公式;2、會用等差數(shù)列通項公式解決一些簡單問題?!菊n前預習】??na,4,7,10,13,16,?,則100a=,猜想na=
【摘要】等差數(shù)列一.選擇題:1、等差數(shù)列{an}中,a1=60,an+1=an+3則a10為………………………………()A、-600B、-120C、60D、-60[來]2、若等差數(shù)列中,a1=4,a3=3,則此數(shù)列的第一個負數(shù)項是……………………()A、a9B、a10C、a11D、a12?
2024-11-30 22:14
【摘要】北師大版高中數(shù)學必修5第一章《數(shù)列》歡迎指導!法門高中姚連省制作等差數(shù)列(一)教學目標及重點難點教學目標?,理解并掌握等差數(shù)列的通項公式,能運用公式解決簡單的問題。?,進一步提高學生的推理歸納能力。重點難點???“等差”特點的理解、把握及
2025-01-13 12:05
【摘要】等差數(shù)列的前n項和(第2課時)學習目標進一步熟練掌握等差數(shù)列的通項公式和前n項和公式,了解等差數(shù)列的一些性質(zhì),并會用它們解決一些相關(guān)問題,提高應用意識.合作學習一、設(shè)計問題,創(chuàng)設(shè)情境復習引入::,分別是,把公式看成方程,能解決幾個量?n的二
2024-12-08 20:22
【摘要】等差數(shù)列(二)課時目標..1.等差數(shù)列的通項公式an=a1+(n-1)d,當d=0時,an是關(guān)于n的常函數(shù);當d≠0時,an是關(guān)于n的一次函數(shù);點(n,an)分布在以____為斜率的直線上,是這條直線上的一列孤立的點.2.已知在公差為d的等差數(shù)列{an}中的第m項am和第n項a
2024-12-05 01:50
【摘要】等差數(shù)列(一)課時目標..1.如果一個數(shù)列從第2項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列就叫做________數(shù)列,這個常數(shù)叫做等差數(shù)列的________,公差通常用字母d表示.2.若三個數(shù)a,A,b構(gòu)成等差數(shù)列,則A叫做a與b的__________,并且A=________
2024-12-04 23:43
【摘要】等差數(shù)列的前n項和教材分析等差數(shù)列的前n項和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問題.在現(xiàn)實生活中,等差數(shù)列的求和是經(jīng)常遇到的一類問題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項和提供了一種重要方法.教材首先通過具體的事例,探索歸納出等差數(shù)列前n項和的求法,接著推廣到一般情況,推導出等差數(shù)列的前n項和公式.為深化對公式的理解,通過對具體例子的研究,弄清等差數(shù)列的前n項和與等差
2025-06-07 23:54
【摘要】第一頁,編輯于星期六:點三十四分。,2.3等差數(shù)列的前n項和第二課時等差數(shù)列前n項和的應用,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第...
2024-10-22 18:53
【摘要】2.等差數(shù)列的前n項和1.(1)對于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-05 10:14
【摘要】等差數(shù)列的前n項和(二)課時目標n項和的性質(zhì),并能靈活運用.n項和的最值問題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項和Sn與an之間的關(guān)系對任意數(shù)列{an},Sn是前n項和,Sn與an的關(guān)系可以表示為an=?????n=,n2.
2024-12-08 13:12
【摘要】第2課時 等差數(shù)列及其前n項和1.理解等差數(shù)列的概念.2.掌握等差數(shù)列的通項公式與前n項和公式.3.能在具體的問題情境中識別數(shù)列的等差關(guān)系,并能用等差數(shù)列的有關(guān)知識解決相應的問題.4.了解等差數(shù)列與一次函數(shù)的關(guān)系. [對應學生用書P83]【梳理自測】一、等差數(shù)列的概念1.在等差數(shù)列{an}中,已知a1=1,a2+a3=
2025-06-08 00:37
【摘要】?2.2等差數(shù)列的前n項和?一、等差數(shù)列{an}的前n項和公式?一般地,我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用Sn表示,即Sn=①________.?對于等差數(shù)列{an}來說,設(shè)其首項為a1,末項為an,項數(shù)為n,由倒序相加法可知其前n項和Sn=②:等差數(shù)列前n項和
2024-11-17 17:38