【摘要】《向量的加法運算及其幾何意義》教案教學(xué)目標(biāo):1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;3、通過將向量運算與熟悉的數(shù)的運算進行類比,使學(xué)生掌握向量加法運算的交換律和結(jié)合律,并會用它們進行向量計算,滲透類比的數(shù)學(xué)方法;教學(xué)重點:會用向量加法的三角形法則和平行四邊形法則作兩個向量的
2025-08-04 23:07
【摘要】講練學(xué)案部分§空間向量及其加減運算.知識點一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【摘要】 向量減法運算及其幾何意義 學(xué)習(xí)目標(biāo) 核心素養(yǎng) ,能用相反向量說出向量減法的意義.(難點) ,能熟練地進行向量的加減運算.(重點) .(易混點) ,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象素養(yǎng). ,...
2025-04-03 03:50
【摘要】2020年高中數(shù)學(xué)對數(shù)及其運算學(xué)案新人教B版必修1知識與技能:1.理解對數(shù)的概念,能說明對數(shù)與指數(shù)的關(guān)系;2.掌握對數(shù)式與指數(shù)式的互化;3.理解和掌握對數(shù)運算的性質(zhì);。過程與方法:1.通過與指數(shù)式的比較,引出對數(shù)定義。2.學(xué)會把未知的問題轉(zhuǎn)化為已知的問題去思考解決。情感態(tài)度與價值觀:學(xué)會對數(shù)式與指
2024-11-19 22:42
【摘要】2.2向量的線性運算2.向量的加法情景:請看如下問題:(1)如圖(1),某人從A到B,再從B按原來的方向到C,則兩次位移的和AB→+BC→應(yīng)該是________.(2)如圖(2),飛機從A到B,再改變方向從B到C,則兩次位移的和AB→+BC→應(yīng)該是________.(3)如圖
2024-12-05 10:16
【摘要】《平面向量的加法及其幾何意義》教學(xué)案例《向量的加法運算及其幾何意義》選自數(shù)學(xué)(基礎(chǔ)模塊),內(nèi)容包括向量加法的三角形法則、平行四邊形法則及應(yīng)用,向量加法的運算律及應(yīng)用。本節(jié)課是學(xué)習(xí)平面向量基本概念之后的一節(jié)比較重要的課,通過類比數(shù)的運算,研究向量的運算及運算律,滲透數(shù)學(xué)建模的思想。向量的加法更是后續(xù)學(xué)習(xí)的鋪墊,因為向量加法運算是平面向量的線性運算(向量加法、向量減法、向量數(shù)乘運算以及它們
2025-06-07 18:55
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的加法課后訓(xùn)練北師大版必修4"1.已知非零向量a,b,c,則向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,與向量a+b+c相等的個數(shù)為().A.2B.3C.
2024-12-03 03:14
【摘要】平面向量基本定理考查知識點及角度難易度及題號基礎(chǔ)中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【摘要】平面向量基本定理1.設(shè)O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個向量
2024-11-19 20:38
【摘要】關(guān)于《平面向量基本定理》的課后反思當(dāng)前,新課程的改革與素質(zhì)教育工作已全面展開,它對教育、教學(xué)不斷提出更新、更高的要求,而課堂教學(xué)是教育教學(xué)的主陣地,那種以老師講解為主,使學(xué)生常常處于消極、被動、受壓抑的狀態(tài),既不能充分地調(diào)動學(xué)生的主動性、積極性,又不能很好地培養(yǎng)學(xué)生的各方面能力的傳統(tǒng)灌輸教學(xué)法與新課程的改革理念及“以學(xué)生為本”的教學(xué)思想已是格格不入。所以課堂教學(xué)
【摘要】平面向量應(yīng)用舉例考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量在物理中的應(yīng)用1、3、59向量在幾何中的應(yīng)用6、7、10綜合運用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個力F1,F(xiàn)2,則|F1+F2|為()A.10
【摘要】關(guān)于《平面向量基本定理》的效果分析一、效果總評本節(jié)課運用了“合作探究、分層推進教學(xué)法”,使學(xué)生在個人自主學(xué)習(xí)、小組合作探究、全班互相交流、教師點評總結(jié)的交互推動下,主動學(xué)習(xí),積極參與,全面合作,廣泛交流。教師營造了民主、平等、互動、開放的學(xué)習(xí)、交流氛圍,較好地發(fā)揮了促進者、指導(dǎo)者和合作者的作用,引領(lǐng)學(xué)生通過對各類有層次的問題的思考、探究、交流、解
【摘要】平面向量應(yīng)用舉例1.如果一架飛機向東飛行200km,再向南飛行300km,記飛機飛行的路程為s,位移為a,那么()A.s>|a|B.s<|a|C.s=|a|D.s與|a|不能比大小解析:s=200+300=500(km),|a|=2020+3002=10013(km),∴s>
【摘要】Nab?底數(shù)冪指數(shù)明確概念指數(shù)式62)3(2)2(6)1(62???xxxxx時所進行的運算:,并指出求求下列各式中的6??x?求底數(shù)進行的是開方運算?64?x求冪進行的是乘方運算求指數(shù)進行的是?運算???x這就是我們今天要研究的問題:
2024-11-17 05:40