【摘要】歸納是通過對(duì)特例的觀察和綜合去發(fā)現(xiàn)一般規(guī)律,一般通過觀察圖形或分析式子尋找規(guī)律,歸納過程的典型步驟是:先在諸多特例中發(fā)現(xiàn)某些相似性,再把相似性推廣為一個(gè)明確表述的一般命題,最后對(duì)該命題進(jìn)行檢驗(yàn)或論證.[例1]在德國布萊梅舉行的第48屆世乒賽期間,某商場櫥窗里用同樣的乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有一層,就一
2024-11-17 19:03
【摘要】2.反證法理解反證法的概念,掌握反證法證題的步驟.本節(jié)重點(diǎn):反證法概念的理解以及反證法的證題步驟.本節(jié)難點(diǎn):應(yīng)用反證法解決問題.1.反證法假設(shè)原命題(即在原命題的條件下,結(jié)論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明,從而證明了,這種證明方法叫做反證法
2024-11-17 23:14
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)平面學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】了解平面的概念,掌握平面的畫法及表示法掌握平面的基本性質(zhì)及它們的作用3、會(huì)用文字語言、圖形語言、符號(hào)語言表示點(diǎn)、線、面的位置關(guān)系【學(xué)習(xí)重點(diǎn)】學(xué)習(xí)重點(diǎn):掌握平面的基本性質(zhì)及它們的作用學(xué)習(xí)難點(diǎn):掌握平面的基本性質(zhì)及它們的作用【自主學(xué)習(xí)】閱
2024-12-05 01:53
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)空間幾何體小結(jié)學(xué)案新人教A版必修2【復(fù)習(xí)導(dǎo)航】能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。、棱錐、棱臺(tái)、圓柱、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征。、錐、臺(tái)的分類。、錐、臺(tái)、球及簡單組合體的概念。。,并根據(jù)所給的三視圖識(shí)別該幾何體。。,利用斜二測畫法畫出空間幾何體的直觀圖。、錐體
2024-12-04 23:45
【摘要】§導(dǎo)數(shù)的概念教學(xué)目標(biāo):1.了解瞬時(shí)速度、瞬時(shí)變化率的概念;2.理解導(dǎo)數(shù)的概念,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;3.會(huì)求函數(shù)在某點(diǎn)的導(dǎo)數(shù)教學(xué)重點(diǎn):瞬時(shí)速度、瞬時(shí)變化率的概念、導(dǎo)數(shù)的概念;教學(xué)難點(diǎn):導(dǎo)數(shù)的概念.教學(xué)過程:一.創(chuàng)設(shè)情景(一)平均變化率(二)探究:計(jì)算運(yùn)動(dòng)員在
2024-11-19 17:29
【摘要】2.演繹推理理解演繹推理的概念,掌握演繹推理的形式,并能用它們進(jìn)行一些簡單的推理,了解合情推理與演繹推理的聯(lián)系與區(qū)別.本節(jié)重點(diǎn):演繹推理的結(jié)構(gòu)特點(diǎn).本節(jié)難點(diǎn):三段論推理規(guī)則.1.演繹推理從的原理出發(fā),推出情況下的結(jié)論的推理形式.它的特點(diǎn)是:由的推理.它的特征是:當(dāng)
2024-11-17 23:15
【摘要】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運(yùn)用綜合法、分析法證題.本節(jié)重點(diǎn):綜合法與分析法的概念及用分析法與綜合法證題的過程、特點(diǎn).本節(jié)難點(diǎn):用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2024-11-18 08:10
【摘要】3.復(fù)數(shù)代數(shù)形式的乘除運(yùn)算掌握復(fù)數(shù)的乘法、除法的運(yùn)算法則并能熟練準(zhǔn)確地運(yùn)用法則解決相關(guān)的問題.本節(jié)重點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.本節(jié)難點(diǎn):復(fù)數(shù)除法.1.復(fù)數(shù)乘法運(yùn)算法則設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2024-11-17 23:19
【摘要】1.7定積分的簡單應(yīng)用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運(yùn)動(dòng)的路程、變力作功等問題.本節(jié)重點(diǎn):應(yīng)用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運(yùn)動(dòng)的路程、變力作功等實(shí)際問題.本節(jié)難點(diǎn):把實(shí)際問題抽象為定積分的數(shù)學(xué)模型.1.利用定
【摘要】①復(fù)數(shù)的分類a+bi?????實(shí)數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復(fù)數(shù)概念的問題,首先可找準(zhǔn)復(fù)數(shù)的實(shí)部與虛部(若復(fù)數(shù)為非標(biāo)準(zhǔn)代數(shù)形式,則應(yīng)通過代數(shù)運(yùn)算化為代數(shù)形式)
【摘要】1.4生活中的優(yōu)化問題舉例能利用導(dǎo)數(shù)知識(shí)解決實(shí)際生活中的最優(yōu)化問題.本節(jié)重點(diǎn):利用導(dǎo)數(shù)知識(shí)解決實(shí)際中的最優(yōu)化問題.本節(jié)難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立函數(shù)模型.1.解決實(shí)際應(yīng)用問題時(shí),要把問題中所涉及的幾個(gè)變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過分析、聯(lián)想、抽象和轉(zhuǎn)
【摘要】1.導(dǎo)數(shù)的概念對(duì)于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應(yīng)地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=
【摘要】復(fù)數(shù)的幾何意義習(xí)題課課時(shí)目標(biāo).,復(fù)數(shù)的模的概念..1.復(fù)數(shù)相等的條件:a+bi=c+di?____________(a,b,c,d∈R).2.復(fù)數(shù)z=a+bi(a,b∈R)對(duì)應(yīng)向量OZ→,復(fù)數(shù)z的模|z|=|OZ→|=__________.3.復(fù)數(shù)z=a+bi(a,b∈R)的模|
2024-12-05 09:31
【摘要】§基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則教學(xué)目標(biāo):1.熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;2.掌握導(dǎo)數(shù)的四則運(yùn)算法則;3.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù)。教學(xué)重點(diǎn):基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則教學(xué)難點(diǎn):基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算
2024-11-20 03:14
【摘要】1.3.2函數(shù)的極值與導(dǎo)數(shù)(1)一、教學(xué)目標(biāo):理解函數(shù)的極大值、極小值、極值點(diǎn)的意義.掌握函數(shù)極值的判別方法.進(jìn)一步體驗(yàn)導(dǎo)數(shù)的作用.二、教學(xué)重點(diǎn):求函數(shù)的極值.教學(xué)難點(diǎn):嚴(yán)格套用求極值的步驟.三、教學(xué)過程:(一)函數(shù)的極值與導(dǎo)數(shù)的關(guān)系1、觀察下圖中的曲線a點(diǎn)的函數(shù)值f(a)比它臨近點(diǎn)的函數(shù)值都大.b點(diǎn)的函數(shù)值f(
2024-11-19 22:43