【摘要】第一章推理與證明§1歸納與類比雙基達(dá)標(biāo)?限時20分鐘?1.把1,3,6,10,15,21,…這些數(shù)叫作三角形數(shù),如圖所示,則第七個三角形數(shù)是().A.27B.28C.29D.30解析第一個三角形數(shù)是1,第二個三角形數(shù)是1+2=3,第三
2024-12-03 00:15
【摘要】習(xí)題課命題及其關(guān)系一、基礎(chǔ)過關(guān)1.“l(fā)gxlgy”是“xy”的____________條件.2.在△ABC中,“△ABC為鈍角三角形”是“AB→·AC→0”的____________條件.3.已知直線l1:x+ay+6=0和l2:(a-2)
2024-12-08 07:02
【摘要】§2導(dǎo)數(shù)的概念及其幾何意義導(dǎo)數(shù)的概念雙基達(dá)標(biāo)?限時20分鐘?1.函數(shù)f(x)在x0處可導(dǎo),則limh→0f?x0+h?-f?x0?h().A.與x0、h都有關(guān)B.僅與x0有關(guān),而與h無關(guān)C.僅與h有關(guān),而與x0無關(guān)D.與x0、h均無關(guān)答案B
2024-12-03 00:14
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.下列平面圖形中可作為空間平行六面體類比對象的是().A.三角形B.梯形C.平行四邊形D.矩形答案C2.下面幾種推理是類比推理的是().A.因為三角形的內(nèi)角和是180°×(3-2),四邊形的內(nèi)角和是180°×(4-
【摘要】第4課時反證法.,掌握反證法證明問題的步驟..生活中的反證法:媽媽常常因家里誰做錯了事而大發(fā)雷霆.有一次,我和爸爸在看電視,妹妹和媽媽在廚房洗碗.突然,有盤子打碎了,當(dāng)時一片寂靜.我說一定是媽媽打破的.為什么呢?
2024-11-19 23:14
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.在△ABC中,tanA·tanB>1,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.不確定解析tanA·tanB>1,∴tanA>0,tanB>0,∴A、B為銳角,又tan(A+B)=tan
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.下列說法正確的是().A.若f(x)≥f(x0),則f(x0)為f(x)的極小值B.若f(x)≤f(x0),是f(x0)為f(x)的極大值C.若f(x0)為f(x)的極大值,則f(x)≤f(x0)D.以上都不對答案D2.已知函數(shù)f(x)在(a,b)上可導(dǎo)
【摘要】第2課時函數(shù)的極值,會從幾何直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用..、參數(shù)取值范圍、判斷方程的根的個數(shù)等問題.若函數(shù)f(x)的定義域為區(qū)間(a,b),導(dǎo)數(shù)f'(x)在(a,b)內(nèi)的圖像如圖所示,用極值的定義你能判斷函數(shù)f(x)在(a,b)內(nèi)的極小值點有幾個嗎?問題
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章2導(dǎo)數(shù)的概念及其幾何意義課時作業(yè)北師大版選修2-2一、選擇題1.設(shè)函數(shù)f(x)在x=x0處可導(dǎo),則當(dāng)h→0時,以下有關(guān)fx0+h-fx0h的值的說法中正確的是()A.與x0,h都有關(guān)B.僅與x0有關(guān)而與h無關(guān)C.僅與h有關(guān)而與x0
2024-12-05 06:27
【摘要】章末復(fù)習(xí)課本課時欄目開關(guān)畫一畫研一研章末復(fù)習(xí)課畫一畫·知識網(wǎng)絡(luò)、結(jié)構(gòu)更完善本課時欄目開關(guān)畫一畫研一研章末復(fù)習(xí)課研一研·題型解法、解題更高效題型一假設(shè)檢驗思想獨立性檢驗的基本思想是統(tǒng)計中的假設(shè)檢驗思想,類似于數(shù)學(xué)中的反證法,要確認(rèn)兩個分
2025-01-13 21:05
【摘要】§本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡單的實際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實際問題的過程中體會建模思想.2.感受導(dǎo)數(shù)知識在解決實際問題中的作
2024-11-18 08:07
【摘要】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-11-17 23:13
【摘要】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19
【摘要】PK!宻燾?[Content_Types].xml?(?
2024-12-05 06:36
【摘要】1.2.3簡單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問題簡單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過中間變量的引入理解