【摘要】第二部分線性代數(shù)第二章行列式簡介行列式是一種常用的數(shù)學工具,也是代數(shù)學中必不可少的基本概念,在數(shù)學和其他應用科學以及工程技術(shù)中有著廣泛的應用。本章主要介紹行列式的概念、性質(zhì)和計算方法。用消元法求解,得:
2025-01-14 04:28
【摘要】任課教師:楊坤一聯(lián)系方式:E-mail:辦公室:四教西3051、基因間“距離”的表示線性代數(shù)的應用舉例2、Euler的四面體問題3、動物數(shù)量的按年齡預測問題4、企業(yè)投入產(chǎn)出分析模型?2022年考研數(shù)學大綱?數(shù)學一、二、三數(shù)學:?線性代數(shù)(22%);?高等數(shù)學
2025-01-15 07:37
【摘要】§2行列式的性質(zhì)與計算§1行列式的定義§3行列式展開定理、克拉默法則第一章行列式§3行列式展開定理、克拉默法則一、余子式、代數(shù)余子式二、行列式按一行(列)展開法則三、克拉默法則§3行列式的展開定理引例,312213332112322
2025-05-07 00:52
【摘要】行列式和矩陣---《線性代數(shù)》線性代數(shù)起源于處理線性關(guān)系問題,它是代數(shù)學的一個分支,形成于20世紀,但歷史卻非常久遠,部分內(nèi)容在東漢初年成書的《九章算術(shù)》里已有雛形論述,不過直到18—19世紀期間,隨著研究線性方程組和變量線性變換問題的深入,才先后產(chǎn)生了行列式和矩陣的概念,為處理線性問題提供了強有力的理論工具,并推動了線性代數(shù)的
2025-01-15 05:50
【摘要】§一.行列式的定義1.二階行列式與三階行列式2.n階行列式二.行列式的性質(zhì)三.行列式按行(列)展開定理及其推論四.方陣乘積的行列式五.克萊姆法則用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2
【摘要】第二章矩陣運算和行列式§矩陣及其運算一.矩陣與向量1.m?n矩陣元素:aij(i=1,…,m,j=1,…,n)?§§§§a11a12…a1na21a22…a2n…………am1
2025-04-29 03:05
【摘要】行列式計算方法研究畢業(yè)論文目錄摘要………………………………………………………………………………………...IAbstract……………………………………………………………………………………...II第1章行列式的計算方法…………………………………………………………………1第1節(jié)利用行列式定義與性質(zhì)計算………………………………………………….1第2節(jié)化三角形法
2025-06-25 14:22
【摘要】計算n階行列式的若干方法舉例n階行列式的計算方法很多,除非零元素較少時可利用定義計算(①按照某一列或某一行展開②完全展開式)外,更多的是利用行列式的性質(zhì)計算,特別要注意觀察所求題目的特點,靈活選用方法,值得注意的是,同一個行列式,有時會有不同的求解方法。下面介紹幾種常用的方法,并舉例說明。1.利用行列式定義直接計算例計算行列式解Dn中不為零的項用一般形式表
2025-06-16 17:54
【摘要】作業(yè):P221(1)7(1)第一周作業(yè)點評復習1、n階行列式的展開定理2、行列式的計算方法(三類)1.定義定義2.性質(zhì)性質(zhì)3.展開(降階)展開(降階).解解::根據(jù)行列式性質(zhì)練習練習4計算行列式解解::行和相同練習練習5計算行列式解解
2025-08-05 10:46
【摘要】§行列式按行(列)展開一、余子式與代數(shù)余子式,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa引例,考察三階行列式??3223332211aaaaa????332131
2025-08-05 16:09
【摘要】2021/6/14線性代數(shù)教學課件1第一章行列式一.二(三)階行列式二.排列與逆序三.n階行列式的定義四.行列式的性質(zhì)五.行列式按行(列)展開六.Cramer法則??行列式概念的形成行列式的基本性質(zhì)及計算方法(定義)
2025-05-14 09:53
【摘要】第三章行列式?第一節(jié)線性方程組與行列式?第二節(jié)排列?第三節(jié)n階行列式?第四節(jié)余子式與行列式展開?第五節(jié)克萊姆規(guī)則第一節(jié)線性方程組與行列式?一.初等代數(shù)回顧?1.二階行列式與二元一次方程組?2.三階行列式與三元一次方程組?二.線性方程組?三.后續(xù)內(nèi)容介紹二
2025-07-20 16:56
【摘要】行列式第二章?n階行列式?行列式性質(zhì)與展開定理?克拉默(Cramer)法則?應用舉例第一節(jié)n階行列式2022/7/153行列式(Determinant)是線性代數(shù)中的一個最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應用于數(shù)學、物理、力學以及工程技
2025-06-17 06:40
【摘要】第一章行列式與矩陣行列式是代數(shù)學中一個重要的工具,利用它可以用來判斷一個n階矩陣是否可逆;可以導出一個矩陣的逆矩陣公式以及著名的克拉姆法則。這一章我們先給出二、三階行列式的定義,在此基礎上歸納出一般n階行列式的定義,然后討論行列式的基本性質(zhì)及其應用?!煨辛惺郊捌湫再|(zhì)在數(shù)學發(fā)展史上,行列式是通過解線
2025-01-13 22:26
【摘要】§n階行列式通過,可對2,3階行列式進一步研究,總結(jié)其結(jié)構(gòu)規(guī)律,再推廣至n階行列式.(2階簡單,只對3階)考察3階行列式:=a11a22a33+a12a23a31+a13a21a32?a13a22a31?a12a21a33?
2025-09-20 19:11