【摘要】求遞推數(shù)列通項公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-10-19 20:27
【摘要】用不動點法求遞推數(shù)列(a2+c2≠0)的通項1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列{}的特征函數(shù)為=kx+c,由kx+c=xx=
2025-06-25 01:55
【摘要】1.在數(shù)列{}中,=1,(n+1)·=n·,求的表達式。2.已知數(shù)列中,,前項和與的關(guān)系是,試求通項公式。3.已知數(shù)的遞推關(guān)系為,且求通項。,,,,求。{}中且(),,求數(shù)列的通項公式。,其中是首項為1,公差為2的等差數(shù)列.求數(shù)列的通項公式;7.已知等差數(shù)列{an}的首項a1=1,公差d0,且第二項、第五項
2025-03-25 05:12
【摘要】專題數(shù)列通項公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點評:利用定義法求數(shù)列通項時要注意不用錯定義,設(shè)法求出首項與公差(公
2025-03-25 02:53
【摘要】1求數(shù)列通項公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項公式求解。例1.寫出下列數(shù)列的通項公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2024-10-21 19:02
【摘要】及通項公式?學(xué)習(xí)目標:,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用
2024-11-09 03:51
2024-11-12 18:09
【摘要】用不動點法求遞推數(shù)列(a2+c2≠0)的通項儲炳南(安徽省岳西中學(xué)246600)1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列
2025-06-23 14:23
【摘要】......求數(shù)列通項公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項公式。 解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差
【摘要】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級:高一學(xué)科教師:課時數(shù):3授課類型等差數(shù)列與通項公式教學(xué)目的掌
2025-06-25 04:00
【摘要】專題:數(shù)列的通項求通項的常見問題:1、特殊數(shù)列的通項2、構(gòu)造特殊數(shù)列,間接求通項3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項公式。『回顧』
2024-11-09 13:17
【摘要】數(shù)列的通項公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項公式,便可以研究數(shù)列的性質(zhì)及前n項和等,所以求數(shù)列的通項公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2024-11-18 18:02
【摘要】等差數(shù)列通項公式教案一教學(xué)類型新知課二教學(xué)目標 ,使學(xué)生加深對等差數(shù)列通項公式的認識,能解決一些簡單的問題; 、項數(shù)、公差、首項,使學(xué)生進一步體會方程思想; 3.培養(yǎng)學(xué)生觀察能力,進一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的應(yīng)用意識.三教學(xué)重點,難點.2通項公式的理解與掌握;教學(xué)難點是掌握公式的推導(dǎo)過程以及對公式靈活運用.四教學(xué)用具實物投影儀,多
2025-07-25 04:58
【摘要】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進而求出數(shù)列的通項公式。二、利用例2.若和分別表示數(shù)列和的前項和,對任意正整數(shù),.求數(shù)列的
2025-08-23 06:16
【摘要】數(shù)列通項公式的求法集錦一、觀察法例1寫出數(shù)列的一個通項公式,使它的前5項分別是下列各數(shù)(1)3,5,9,17,33(2)-1/2,1/2,-3/8,1/4,-5/32(3)2,22,222,2222,22222注:在平時學(xué)習(xí)中要牢記常見的一些數(shù)列通項公式,如n,1/n,2n,2n+1,n!,,n(n+1)等,其他數(shù)列往往由這些基本數(shù)列和其他常數(shù)進行四則運
2025-04-02 01:08