【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2025-09-25 17:17
【摘要】立體幾何中的向量方法——方向向量與法向量如圖,l為經(jīng)過已知點A且平行于非零向量a的直線,那么非零向量a叫做直線l的方向向量。l?A?Pa1.直線的方向向量直線l的向量式方程換句話說,直線上的非零向量叫做直線的方向向量APta?一、方向向量與法向量
2025-08-05 10:46
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號表示為記為平行與平面則稱平面沒有公共點與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2025-08-05 09:40
【摘要】立體幾何復習講義【基礎回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負向量:兩個模相等且方向相反的向量是互為負向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】第一篇:文科立體幾何證明 立體幾何證明題常見題型 1、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC=1,E是PC的中 點,作EF^PB交PB于點F. ...
2024-10-26 17:25
【摘要】第一篇:高中立體幾何 高中立體幾何的學習 高中立體幾何的學習主要在于培養(yǎng)空間抽象能力的基礎上,發(fā)展學生的邏輯思維能力和空間想象能力。立體幾何是中學數(shù)學的一個難點,學生普遍反映“幾何比代數(shù)難學”。但...
2024-11-15 06:58
【摘要】1.[2007年普通高等學校統(tǒng)一考試(海南、寧夏卷)數(shù)學文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( )A. B.C. D.2.[2008年普通高等學校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導學生閱讀教材P42前幾行相關內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-17 00:53
【摘要】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點,求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【摘要】第一篇:立體幾何教材分析 《數(shù)學必修模塊2》立體幾何教材分析 長沙市二十六中 為了更好地組織實施好本模塊的教學,我們高一年級數(shù)學備課組成員以問題為載體,主要對如下課題進行了研究:(1)課標中所提...
2024-11-15 06:00
【摘要】如何學好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學好立體幾何談幾點建議。一立足課本,夯實基礎直線和平面這些內(nèi)容,是立體幾何的基礎,學好這部分的一個捷徑就是認真學習定理的證明,尤其是一些很關鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關系的闡述。但定理的
2025-09-25 17:14
【摘要】教學設計方案XueDaPPTSLearningCenter立體幾何知識點整理(文科)一.直線和平面的三種位置關系:1.線面平行符號表示:2.線面相交符號表示:3.線在面內(nèi)符號表示:二.平行關系:1.線線平行:方法一:用線面平行實現(xiàn)。方法二:用面面平行實現(xiàn)。
2025-08-08 12:27
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運
2024-11-12 01:34
【摘要】立體幾何之外接球秒殺第一種長方體正方體模型長方體各頂點可在一個球面上,長為abc,,,其體對角線為l.當球為長方體的外接球時,截面圖為長方體的對角面和其外接圓,故球的半徑例1(1)已知各頂點都在同一球面上的正四棱柱的高為4,體積為16,則這個球的表面積是()A.16pB.20pC.24
2025-07-24 12:09