【摘要】第一篇:高中立體幾何 高中立體幾何的學(xué)習(xí) 高中立體幾何的學(xué)習(xí)主要在于培養(yǎng)空間抽象能力的基礎(chǔ)上,發(fā)展學(xué)生的邏輯思維能力和空間想象能力。立體幾何是中學(xué)數(shù)學(xué)的一個(gè)難點(diǎn),學(xué)生普遍反映“幾何比代數(shù)難學(xué)”。但...
2024-11-15 06:58
【摘要】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( )A. B.C. D.2.[2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(山東
2025-06-07 22:04
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號(hào)表示為L(zhǎng)A·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測(cè)量用的平板儀等等……C·
2025-04-17 00:53
【摘要】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長(zhǎng)方體邊形 .-的棱A、C的中點(diǎn),求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點(diǎn)A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【摘要】第一篇:立體幾何教材分析 《數(shù)學(xué)必修模塊2》立體幾何教材分析 長(zhǎng)沙市二十六中 為了更好地組織實(shí)施好本模塊的教學(xué),我們高一年級(jí)數(shù)學(xué)備課組成員以問題為載體,主要對(duì)如下課題進(jìn)行了研究:(1)課標(biāo)中所提...
2024-11-15 06:00
【摘要】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點(diǎn)建議。一立足課本,夯實(shí)基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2024-10-04 17:14
【摘要】教學(xué)設(shè)計(jì)方案XueDaPPTSLearningCenter立體幾何知識(shí)點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號(hào)表示:2.線面相交符號(hào)表示:3.線在面內(nèi)符號(hào)表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。
2024-08-17 12:27
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運(yùn)
2024-11-12 01:34
【摘要】立體幾何之外接球秒殺第一種長(zhǎng)方體正方體模型長(zhǎng)方體各頂點(diǎn)可在一個(gè)球面上,長(zhǎng)為abc,,,其體對(duì)角線為l.當(dāng)球?yàn)殚L(zhǎng)方體的外接球時(shí),截面圖為長(zhǎng)方體的對(duì)角面和其外接圓,故球的半徑例1(1)已知各頂點(diǎn)都在同一球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是()A.16pB.20pC.24
2025-07-24 12:09
【摘要】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點(diǎn)且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時(shí),有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【摘要】一、復(fù)習(xí)用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運(yùn)算)(
2024-11-09 03:30
【摘要】-1-目錄(基礎(chǔ)復(fù)習(xí)部分)第十章立體幾何.................................................................................................................................................2第57課平面的基本性質(zhì)與空間兩條直線的位
2025-01-18 07:17