【摘要】圓錐曲線方程知識(shí)要點(diǎn)一、橢圓方程及其性質(zhì).1.橢圓的第一定義:橢圓的第二定義:,點(diǎn)P到定點(diǎn)F的距離,d為點(diǎn)P到直線l的距離其中F為橢圓焦點(diǎn),l為橢圓準(zhǔn)線①橢圓的標(biāo)準(zhǔn)方程:的參數(shù)方程為()(現(xiàn)在了解,后面選修4-4要詳細(xì)講).②通徑:垂直于對(duì)稱軸且過(guò)焦點(diǎn)的弦叫做通徑,橢圓通徑長(zhǎng)為③設(shè)橢圓:上弦AB的中點(diǎn)為M(x0,y0),則斜率kAB=,對(duì)橢圓:,則kAB=.弦
2025-04-04 05:07
【摘要】......圓錐曲線橢圓專項(xiàng)訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點(diǎn),過(guò)點(diǎn); (2)一個(gè)焦點(diǎn)為(0,1)長(zhǎng)軸和短軸的長(zhǎng)度之比為t; (3)兩焦點(diǎn)與短軸一個(gè)端點(diǎn)為正三
2025-06-22 15:55
【摘要】......橢圓知識(shí)點(diǎn)【知識(shí)點(diǎn)1】橢圓的概念:在平面內(nèi)到兩定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓.這兩定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做焦距.當(dāng)動(dòng)點(diǎn)設(shè)為M時(shí),橢圓即為點(diǎn)集
2025-06-20 08:24
【摘要】1.設(shè)P是橢圓+=1上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( )A.4 B.5C.8 D.10答案:D2.橢圓+=1的焦點(diǎn)坐標(biāo)是( )A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)答案:D3.已知橢圓的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(
2025-07-23 20:57
【摘要】二圓錐曲線的參數(shù)方程更上一層樓基礎(chǔ)·鞏固1直線=1與橢圓=1相交于A、B兩點(diǎn),該橢圓上點(diǎn)P使得△PAB的面積等于3,這樣的點(diǎn)P共有()思路解析:設(shè)P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2025-08-05 03:29
【摘要】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2025-08-04 07:08
【摘要】精心整理圓錐曲線大題題型歸納基本方法:1.待定系數(shù)法:求所設(shè)直線方程中的系數(shù),求標(biāo)準(zhǔn)方程中的待定系數(shù)、、、、等等;2.齊次方程法:解決求離心率、漸近線、夾角等與比值有關(guān)的問(wèn)題;3.韋達(dá)定理法:直線與曲線方程聯(lián)立,交點(diǎn)坐標(biāo)設(shè)而不求,用韋達(dá)定理寫出轉(zhuǎn)化完成。要注意:如果方程的根很容易求出,就不必用韋達(dá)定理,而直接計(jì)算出兩個(gè)根;4.點(diǎn)差法:弦中點(diǎn)問(wèn)題,端點(diǎn)坐標(biāo)設(shè)而不求。
2025-07-24 00:34
【摘要】高中數(shù)學(xué)精講精練第九章圓錐曲線【知識(shí)圖解】【方法點(diǎn)撥】解析幾何是高中數(shù)學(xué)的重要內(nèi)容之一,也是銜接初等數(shù)學(xué)和高等數(shù)學(xué)的紐帶。而圓錐曲線是解析幾何的重要內(nèi)容,因而成為高考考查的重點(diǎn)。研究圓錐曲線,無(wú)外乎抓住其方程和曲線
2025-08-11 14:54
【摘要】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標(biāo)準(zhǔn)方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學(xué)們生活學(xué)習(xí)中見過(guò)拋物線的實(shí)例有哪些?噴泉探照燈的燈面平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(l不過(guò)點(diǎn)F)的距離相等的點(diǎn)
2024-10-17 18:08
【摘要】......:?(1)第一定義中要重視“括號(hào)”內(nèi)的限制條件:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無(wú)軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕
2025-06-19 02:06
【摘要】考點(diǎn)41直線與圓錐曲線的位置關(guān)系一、直線與圓錐曲線的位置關(guān)系1.曲線的交點(diǎn)在平面直角坐標(biāo)系xOy中,給定兩條曲線,已知它們的方程為,求曲線的交點(diǎn)坐標(biāo),即求方程組的實(shí)數(shù)解.方程組有幾組實(shí)數(shù)解,,則這兩條曲線沒(méi)有交點(diǎn).2.直線與圓錐曲線的交點(diǎn)個(gè)數(shù)的判定設(shè)直線,圓錐曲線,把二者方程聯(lián)立得到方程組,消去得到一個(gè)關(guān)于的方程.(1)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)解,即直線與圓
2025-07-25 06:38
【摘要】高二圓錐曲線知識(shí)點(diǎn)總結(jié)與例題分析一、橢圓1、橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。注:①以上方程中的大小,其中;②在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。例如
2025-07-24 12:32
【摘要】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件77《圓錐曲線-軌跡方程》基本知識(shí)概要:一、求軌跡的一般方法:1.直接法:如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡(jiǎn)單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡(jiǎn),證明五個(gè)步驟,最后的證明可以省
2025-07-24 10:09
【摘要】直線與圓1、直線的傾斜角:(1)定義:在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)過(guò)的最小正角記為,那么就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;(2)傾斜角的范圍2、直線的斜率:(1)定義:傾斜角不是90°的直線,它的傾斜角的正切值叫這條直線的斜率,即=tan(≠90°);傾斜角為90°的直
2025-07-23 14:00
【摘要】二 圓錐曲線的參數(shù)方程[學(xué)習(xí)目標(biāo)].、拋物線的參數(shù)方程.、有關(guān)點(diǎn)的軌跡問(wèn)題.[知識(shí)鏈接],參數(shù)φ是OM的旋轉(zhuǎn)角嗎?提示 橢圓的參數(shù)方程(φ為參數(shù))中的參數(shù)φ不是動(dòng)點(diǎn)M(x,y)的旋轉(zhuǎn)角,它是點(diǎn)M所對(duì)應(yīng)的圓的半徑OA(或OB)的旋轉(zhuǎn)角,稱為離心角,不是OM的旋轉(zhuǎn)角.,參數(shù)φ的三角函數(shù)secφ的意義是什么?提示 secφ=,其中φ∈[0,2π)且φ≠,φ≠
2025-08-05 04:45