【摘要】2022年01月圓的推廣飛船軌道為什么斜著切割一個圓柱得到的截線是一個橢圓呢?有關圓的某些定理在圓錐曲線中的推廣是什么樣的?圓錐曲線在大自然的基本結(jié)構(gòu)中扮演著怎樣的角色?斜切圓柱“數(shù)學是人類文化的重要組成部分……應適當反映數(shù)學的歷史、應用和發(fā)展趨勢,數(shù)學
2025-01-19 01:18
【摘要】圓錐曲線習題課1.直線與圓錐曲線的位置關系:用△判定。2.中點弦問題,常用點差法解決。3.對于垂直問題,常用到x1x2+y1y2=0。4.對于分點問題,可利用向量關系列出方程。5.解題工具有:韋達定理、弦長公式等。復習回顧:當0°≤θ≤180°時,方程x2cosθ+
2025-08-05 04:08
【摘要】2020屆高考數(shù)學二輪復習系列課件24《圓錐曲線》圓錐曲線與平面向量考試內(nèi)容:橢圓、雙曲線、拋物線的定義、標準方程、幾何性質(zhì)以及直線與圓錐曲線的位置關系,平面向量的概念,向量的坐標運算.高考熱點:圓錐曲線與平面向量的綜合.熱點題型1:直線與圓錐曲線的位置關系新題型分類例析
2024-11-11 02:54
【摘要】知識結(jié)構(gòu)?????圓錐曲線橢圓雙曲線拋物線標準方程幾何性質(zhì)標準方程幾何性質(zhì)標準方程幾何性質(zhì)第二定義第二定義統(tǒng)一定義綜合應用橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)
2025-08-05 04:45
【摘要】圓錐曲線小結(jié)與復習一東莞中學松山湖學校劉建軍審核安徽涇縣中學查日順軌跡方程的求解問題:(1)建系(2)設點(3)列式(4)代換(5)化簡(6)證明(略)注:驗證常用思路:化簡是否同解變形;是否滿足題意;特殊點是否成立:(1)直接法;(2)待
2025-07-25 03:46
【摘要】山東省嘉祥縣第四中學曾慶坤一、復習圓錐曲線的定義1、橢圓的第一定義與第二定義2、雙曲線的第一定義與第二定義3、拋物線的定義二、經(jīng)典回顧1、已知動圓M和圓內(nèi)切,并和圓外切,動圓圓心M的軌跡方程為
2024-11-06 14:25
【摘要】?第四節(jié)圓錐曲線的綜合問題考綱點擊了解圓錐曲線的初步應用熱點提示(組)求圓錐曲線的基本量;(不等式)研究圓錐曲線有關參變量的范圍;點的軌跡方程;考綱點擊了解圓錐曲線的初步應用熱點提示“計算”的方法證明圓錐曲線的有關性質(zhì);線和圓錐曲線的交點問
2024-11-10 00:28
【摘要】1圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質(zhì)直線與圓錐曲線的位置關系一、知識點框架2雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2
2025-08-15 23:07
【摘要】直線與圓錐曲線的位置關系思考一:直線與圓有幾種位置關系??答:有三種:相交、相切、相離復習回顧思考二:如何判定直線與圓的位置關系??1幾何法:?(1)dr=〉
2025-07-26 04:01
【摘要】?解析幾何的產(chǎn)生?十六世紀以后,由于生產(chǎn)和科學技術的發(fā)展,天文、力學、航海等方面都對幾何學提出了新的需要。比如,德國天文學家開普勒發(fā)現(xiàn)行星是繞著太陽沿著橢圓軌道運行的,太陽處在這個橢圓的一個焦點上;意大利科學家伽利略發(fā)現(xiàn)投擲物體試驗著拋物線運動的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復雜的曲線,原先的一套方法顯然已經(jīng)不適應了
2025-08-05 10:19
【摘要】高中數(shù)學選修2-1姓名:宋錦芳單位:江蘇省靖江第一高級中學3.拋物線的定義:平面內(nèi)到定點F的距離和到定直線的距離相等的點的軌跡:表達式PF=d(d為動點到定直線距離)1.橢圓的定義:平面內(nèi)到兩定點F1,F(xiàn)2距離之和等于常數(shù)2a(2aF1F2)的點的軌跡:表達式
2024-11-21 04:15
【摘要】......橢圓雙曲線的經(jīng)典結(jié)論一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.
2025-06-20 08:50
【摘要】橢圓【學習目標】1.掌握橢圓的標準方程,會求橢圓的標準方程;2.掌握橢圓的簡單幾何性質(zhì),能運用橢圓的標準方程和幾何性質(zhì)處理一些簡單的實際問題;3.了解運用曲線的方程研究曲線的幾何性質(zhì)的思想方法。B級要求【自學評價】橢圓定義:2.橢圓的標準方程:①焦點在x軸上的方程:,②焦點在y軸上的方程:3.橢圓的簡單幾何性質(zhì):方程
2025-06-07 23:27
【摘要】直線和圓錐曲線??糹an錐曲線經(jīng)