【摘要】基本不等式【學(xué)習(xí)目標(biāo)】ab?2ba?的證明方法,要求學(xué)生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導(dǎo)過(guò)程。.【學(xué)習(xí)重難點(diǎn)】理解利用基本不等式ab?2ba?求函數(shù)的最值問(wèn)題【類(lèi)法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-11-23 12:48
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^(guò)程中往往會(huì)遇到各種各樣的題型而覺(jué)得無(wú)從入手。現(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問(wèn)題,淺談利用基本不等式求最值的各類(lèi)題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)
2025-07-23 12:30
【摘要】第一篇:基本不等式的教學(xué)設(shè)計(jì) 《基本不等式》教學(xué)設(shè)計(jì) 基本不等式 教材分析 本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠...
2024-10-24 17:31
【摘要】(第一課時(shí))導(dǎo)學(xué)案【課程標(biāo)準(zhǔn)要求】①探索并了解基本不等式的證明過(guò)程.②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮?wèn)題.【學(xué)習(xí)目標(biāo)】①經(jīng)歷由幾何圖形抽象出重要不等式的過(guò)程,會(huì)用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過(guò)程,知道與的相等與不等關(guān)系及等號(hào)成立的條件;矚慫潤(rùn)厲釤瘞睞櫪廡賴(lài)賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過(guò)程,加深認(rèn)識(shí)基本不等
2025-04-16 12:23
【摘要】基本不等式(第一課時(shí))教學(xué)設(shè)計(jì)及反思?人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)(必修5)》中的“基本不等式”。下面把這節(jié)課的教學(xué)設(shè)計(jì)、教后反思記錄下來(lái),愿與同行研討。“基本不等式”是必修5的重點(diǎn)內(nèi)容,在課本封面上就體現(xiàn)出來(lái)了。它是在學(xué)完“不等式的性質(zhì)”、“不等式的解法”及“線(xiàn)性規(guī)劃”的基礎(chǔ)上對(duì)不等式的進(jìn)一步研究.在不等式的證明和求最值過(guò)程中有著廣泛的應(yīng)用。求最值又是
2025-08-05 04:52
【摘要】第1頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第一部分高考專(zhuān)題講解第2頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)專(zhuān)題五數(shù)列、不等式、推理與證明第3頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第十三講
2025-05-07 22:33
【摘要】:學(xué)案(第一課時(shí))一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿(mǎn)足,則的最小值是.(2)已知正數(shù)滿(mǎn)足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實(shí)數(shù)、、滿(mǎn)足,則的最大值為▲.3、已知正實(shí)數(shù)x,y滿(mǎn)足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實(shí)數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號(hào)的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2024-10-28 23:35
【摘要】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)
2025-03-24 03:55
【摘要】專(zhuān)題基本不等式編者:高成龍專(zhuān)題基本不等式【一】基礎(chǔ)知識(shí)基本不等式:(1)基本不等式成立的條件:;(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí)取等號(hào).(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2025-08-04 10:01
2025-08-04 09:13
【摘要】不等式的應(yīng)用高三備課組一、內(nèi)容歸納1知識(shí)精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運(yùn)用不等式的的知識(shí)和思想方法分析、解決一些涉及不等式關(guān)系的問(wèn)題.2重點(diǎn)難點(diǎn):善于將一個(gè)表面上看來(lái)并非是不等式的問(wèn)題借助不等式的有關(guān)部門(mén)知識(shí)來(lái)解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-09 08:50
【摘要】第36講不等式的性質(zhì)與基本不等式及應(yīng)用等關(guān)系,了解不等式(組)的實(shí)際背景.,掌握比較兩個(gè)實(shí)數(shù)大小的一般步驟.,會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.x0,則x+的最小值為.2x22α∈(0,),β∈[0,],那么2α-的取
2024-11-09 04:21