freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

概率論與數(shù)理統(tǒng)計(jì)課后習(xí)題答案下(存儲(chǔ)版)

2025-07-24 20:46上一頁面

下一頁面
  

【正文】 = fY(y)=求(1) E(X+Y)。(3) D(X).【解】(1) 由得.(2) (3) 故 ,其中9個(gè)合格品,從袋中一個(gè)一個(gè)地取出(取出后不放回),設(shè)在取出合格品之前已取出的廢品數(shù)為隨機(jī)變量X,求E(X)和D(X).【解】設(shè)隨機(jī)變量X表示在取得合格品以前已取出的廢品數(shù),則X的可能取值為0,1,2,下面求取這些可能值的概率,易知 于是,得到X的概率分布表如下:X0123P由此可得 (以年計(jì))服從指數(shù)分布,概率密度為f(x)=為確保消費(fèi)者的利益,工廠獲利100元,而調(diào)換一臺(tái)則損失200元,試求工廠出售一臺(tái)設(shè)備贏利的數(shù)學(xué)期望.【解】廠方出售一臺(tái)設(shè)備凈盈利Y只有兩個(gè)值:100元和 200元 故 (元).,X2,…,Xn是相互獨(dú)立的隨機(jī)變量,且有E(Xi)=μ,D(Xi)=σ2,i=1,2,…,n,記,S2=.(1) 驗(yàn)證=μ, =;(2) 驗(yàn)證S2=;(3) 驗(yàn)證E(S2)=σ2.【證】(1) (2) 因 故.(3) 因,故同理因,故.從而 ,已知D(X)=2,D(Y)=3,Cov(X,Y)= 1,計(jì)算:Cov(3X 2Y+1,X+4Y 3).【解】 (因常數(shù)與任一隨機(jī)變量獨(dú)立,故Cov(X,3)=Cov(Y,3)=0,其余類似).(X,Y)的概率密度為f(x,y)=試驗(yàn)證X和Y是不相關(guān)的,但X和Y不是相互獨(dú)立的.【解】設(shè). 同理E(Y)=0.而 ,由此得,故X與Y不相關(guān).下面討論獨(dú)立性,當(dāng)|x|≤1時(shí), 當(dāng)|y|≤1時(shí),.顯然故X和Y不是相互獨(dú)立的.(X,Y)的分布律為XY 1 0 1 1011/8 1/8 1/81/8 0 1/81/8 1/8 1/8驗(yàn)證X和Y是不相關(guān)的,但X和Y不是相互獨(dú)立的.【解】聯(lián)合分布表中含有零元素,X與Y顯然不獨(dú)立,由聯(lián)合分布律易求得X,Y及XY的分布律,其分布律如下表X 101 PY 101 PXY 101 P由期望定義易得E(X)=E(Y)=E(XY)=0.從而E(XY)=E(X)P(B)所以,|ρ|≤1.36. 設(shè)隨機(jī)變量X的概率密度為fX(x)=令Y=X2,F(xiàn)(x,y)為二維隨機(jī)變量(X,Y)的分布函數(shù),求:(1) Y的概率密度fY(y);(2) Cov(X,Y)。E(Y)= =0從而 =0,0P(A)1,0P(B)1,則稱ρ=:(1) 事件A和B獨(dú)立的充分必要條件是ρ=0;(2) |ρ|≤1. 【證】(1)由ρ的定義知,ρ=0當(dāng)且僅當(dāng)P(AB) P(A)(X,Y)的分布密度f(x,y)=求:(1) 常數(shù)A;(2) 隨機(jī)變量(X,Y)的分布函數(shù);(3) P{0≤X1,0≤Y2}.【解】(1) 由得 A=12(2) 由定義,有 (3) (X,Y)的概率密度為f(x,y)=(1) 確定常數(shù)k;(2) 求P{X<1,Y<3};(3) 求P{X};(4) 求P{X+Y≤4}.【解】(1) 由性質(zhì)有故 (2) (3) (4) 題5圖,X在(0,)上服從均勻分布,Y的密度函數(shù)為fY(y)=求:(1) X與Y的聯(lián)合分布密度;(2) P{Y≤X}.題6圖【解】(1) 因X在(0,)上服從均勻分布,所以X的密度函數(shù)為而所以 (2) (X,Y)的聯(lián)合分布函數(shù)為F(x,y)=求(X,Y)的聯(lián)合分布密度.【解】(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題8圖 題9圖(X,Y)的概率密度為f(x,y)=求邊緣概率密度.【解】 題10圖(X,Y)的概率密度為f(x,y)=(1) 試確定常數(shù)c;(2) 求邊緣概率密度.【解】(1) 得.(2) (X,Y)的概率密度為f(x,y)=求條件概率密度fY|X(y|x),fX|Y(x|y). 題11圖【解】 所以 ,2,3,4,5,從中任取三個(gè),記這三個(gè)號(hào)碼中最小的號(hào)碼為X,最大的號(hào)碼為Y.(1) 求X與Y的聯(lián)合概率分布;(2) X與Y是否相互獨(dú)立?【解】(1) X與Y的聯(lián)合分布律如下表YX345120300(2) 因故X與Y不獨(dú)立(X,Y)的聯(lián)合分布律為XY2 5 8 (1)求關(guān)于X和關(guān)于Y的邊緣分布;(2) X與Y是否相互獨(dú)立?【解】(1)X和Y的邊緣分布如下表XY258P{Y=yi}(2) 因故X與Y不獨(dú)立.,X在(0,1)上服從均勻分布,Y的概率密度為fY(y)=(1)求X和Y的聯(lián)合概率密度;(2) 設(shè)含有a的二次方程為a2+2Xa+Y=0,試求a有實(shí)根的概率.【解】(1) 因 故 題14圖(2) 方程有實(shí)根的條件是故 X2≥Y,從而方程有實(shí)根的概率為: (以小時(shí)計(jì)),并設(shè)X和Y相互獨(dú)立,且服從同一分布,其概率密度為f(x)=求Z=X/Y的概率密度.【解】如圖,Z的分布函數(shù)(1) 當(dāng)z≤0時(shí),(2) 當(dāng)0z1時(shí),(這時(shí)當(dāng)x=1000時(shí),y=)(如圖a) 題15圖(3) 當(dāng)z≥1時(shí),(這時(shí)當(dāng)y=103時(shí),x=103z)(如圖b) 即 故 (以小時(shí)計(jì))近似地服從N(160,202) 只,求其中沒有一只壽命小于180的概率.【解】設(shè)這四只壽命為Xi(i=1,2,3,4),則Xi~N(160,202),從而 ,Y是相互獨(dú)立的隨機(jī)變量,其分布律分別為P{X=k}=p(
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1