【摘要】概念、方法、題型、易誤點及應試技巧總結平面向量一.向量有關概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平秱)。如:已知A(1,2),B(4,2),則把向量AB按向量a=(-1,3)平移后得到的向量是_____(答
2024-10-26 20:51
【摘要】(1)平面向量的加法崇明區(qū)東門中學趙靜教學目標:1.經(jīng)歷引進向量加法的過程,初步掌握向量加法的三角形法則,會用作圖的方法求兩個向量的和向量。2.知道零向量的意義以及零向量的特征。3.通過作圖歸納出向量的加法的交換律和結合律,會利用它們進行向量運算。教學重點:掌握向量加法的三角形法則,會用作圖
2025-04-17 01:00
【摘要】平面向量一、本章知識體系?重點及難點:向量概念;向量共線的充要條件;平面向量基本定理;向量的數(shù)量積定義,及運算程及運用;定比分是公式;平移公式及應用;用正、余弦定理解三角形。???純?nèi)容:平面向量的概念及運算;向量數(shù)量積的,應用向量知識解決向量平行、垂直、角度和長度等問題,解斜三角形。?例如圖:△AB
2024-11-09 00:20
【摘要】第一篇:平面向量的應用 平面向量的應用 平面向量是一個解決數(shù)學問題的很好工具,它具有良好的運算和清晰的幾何意義。在數(shù)學的各個分支和相關學科中有著廣泛的應用。下面舉例說明。 一、用向量證明平面幾何...
2024-11-15 03:33
【摘要】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數(shù)溫故知新1.當時:0??2.當時:0
2025-08-15 23:54
【摘要】《平面向量》全章復習與鞏固編稿:孫永釗 審稿:王靜偉 【學習目標】通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示;(1)通過實例,掌握向量加、減法的運算,并理解其幾何意義;(2)通過實例,掌握向量數(shù)乘的運算,并理解其幾何意義,以及兩個向量共線的含義;(3)了解向量的線性運算性質(zhì)及其幾何意義.(1)
2025-04-17 07:26
【摘要】第二章平面向量向量的概念及表示【學習目標】,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量的概念;并會區(qū)分平行向量、相等向量和共線向量;,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別;,培養(yǎng)學生認識客觀事物的數(shù)學本質(zhì)的能力?!緦W習重難點】重點:平行向量的概念和向量的幾何表示;難點:區(qū)分平行向量、相等向
2025-04-17 01:18
【摘要】平面向量與空間向量知識點對比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長度,用||或|a|表示零向量長度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長度相等,方向相同的向量叫做相等向量相反向量長度相
2025-06-19 22:59
【摘要】平面向量專題一、選擇題,邊的高為,若,,,,,則(A)(B)(C)(D),向量且,則(A)(B)(C)(D),b是兩個非零向量。|a+b|=|a|-|b|,則a⊥b
2025-04-17 13:06
【摘要】近年來,對于三角形的“四心”問題的考察時有發(fā)生,尤其是和平面向量相結合來考察很普遍,難度上偏向中等,只要對于這方面的知識準備充分,“四心”問題的類型題做一闡述:一、???重心問題三角形“重心”是三角形三條中線的交點,所以“重心”就在中線上.例1?已知O是平面上一?定點,A,B,C是平面上不共線的三個點,動點P滿足:,則P的軌跡一
2025-08-05 06:10
【摘要】......平面向量高考真題精選(一) 一.選擇題(共20小題)1.(2017?新課標Ⅱ)設非零向量,滿足|+|=|﹣|則( )A.⊥ B.||=|| C.∥ D.||>|| 2.(2017?新課標Ⅱ)已知△ABC是邊
【摘要】平面向量:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數(shù)λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=
2025-03-25 01:23
【摘要】平面向量基本定理課時練1.給出下面三種說法:①一個平面內(nèi)只有一對不共線的非零向量可作為表示該平面所有向量的基底;②一個平面內(nèi)有無數(shù)多對不共線的非零向量可作為表示該平面所有向量的基底;③零向量不可為基底中的向量.其中正確的說法是( )A.①② B.②③C.①③ D.②解析:因為不共線的兩個向量都可以作為一組基底,所以一個平面內(nèi)有無數(shù)多個基底,又零向
2025-03-25 01:22
【摘要】西安高新第三中學導學案學科數(shù)學編寫孫晉校對班級高一()班小組學生評價課題第1課時課題:§2.4平面向量的坐標學習目
2025-04-16 23:06
【摘要】§高一()班姓名:上課時間:【目標與導入】1、學習平面向量基本定理及其應用;2、學會在具體問題中適當選取基底,使其他向量能夠用基底來表達。【預習與檢測】1、點C在線段AB上,且,,則等于()ABA、B、