【正文】
接頭。首先繪制懸架總裝圖,再根據(jù)總裝圖繪制零件圖。同一圖樣中,同類圖線的寬度應(yīng)基本一致,虛線、點畫線、雙點畫線的線段長度和間隔應(yīng)各自大致相等。AutoCAD二維圖模塊提供了正交、對象捕捉、極軸追蹤、捕捉追蹤等繪圖輔助工具。圖47主銷偏距對比 本章小結(jié)本章概述了運動學(xué)仿真技術(shù)的發(fā)展概況,并簡要介紹了ADAMS/CAR的特點與應(yīng)用。因此在保證車輪外傾角、主銷后傾角、主銷內(nèi)傾角、車輪前束角值符合要求的前提下,主要針對注銷偏移距進行優(yōu)化。根據(jù)所確定的后懸架參數(shù)硬點尺寸參數(shù),系統(tǒng)空間參數(shù)如表43。圖43車輪外傾角對比圖44主銷內(nèi)傾角對比圖中虛線為原數(shù)據(jù),實線為優(yōu)化后數(shù)據(jù)。車輪外傾角變化造成車輪出現(xiàn)過大的不足轉(zhuǎn)向或過度轉(zhuǎn)向趨勢。圖41前懸架建模 仿真計算與結(jié)果分析建成懸架模型后,將懸架模型與測試平臺裝配。考慮到汽車基本上為一縱向?qū)ΨQ系統(tǒng),軟件模塊已預(yù)先對建模過程進行了處理,產(chǎn)品設(shè)計人員只需建立左邊或右邊的1/2懸架模型,另一半將會根據(jù)對稱性自動生成,當然設(shè)計人員也可建立非對稱的分析模型。另一方面,又是虛擬樣機分析開發(fā)工具,其開放性的程序結(jié)構(gòu)和多種接口,可以成為特殊行業(yè)用戶進行特殊類型虛擬樣機分析的二次開發(fā)工具平臺[15]。主銷后傾角為正值時有抑制制動時的點頭作用,但太大時會使車輪支撐處反力矩過大,易造成車輪擺振或轉(zhuǎn)向盤上力的變化。這種應(yīng)用在于仿真軟件能夠使用計算機代碼和方程準確的模擬真實的機械系統(tǒng),避免了傳統(tǒng)的產(chǎn)品開發(fā)過程中零部件和樣機的反復(fù)制造、試驗等過程,同時硬件建設(shè)成本的降低節(jié)省了大量的時間和財力,為產(chǎn)品迅速占領(lǐng)市場贏得了更多的機會。傳統(tǒng)設(shè)計一般采用經(jīng)驗設(shè)計、數(shù)學(xué)推導(dǎo)法以及幾何作圖等方法,雖然可以滿足設(shè)計要求,但精度和效率不高。并應(yīng)用GSA模塊對各主要零件進行了CAE分析,校核了零件的強度與剛度。各部件最大位移為:, ,,且各零件變形均在合理范圍內(nèi),強度符合設(shè)計要求。而縱向力、側(cè)向力與力矩均由轉(zhuǎn)向節(jié)、連桿及橫臂承受和傳遞,這三種組件受力最為復(fù)雜[12]。以拉伸與剪切建立鉸接點,延連桿軸線設(shè)立平面。工作缸筒與安裝支座采用“Sheet metal Design”鈑金模塊設(shè)計,并預(yù)先標注安裝定位銷位置。然后建立掃略輪廓,在螺旋線的起點先建立一個平面,在這個平面再繪制彈簧的截面,彈簧鋼絲直徑為14mm。螺旋線螺距為25mm, , 彈簧螺旋角為7176。CATIA的混合建模功能涉及到草圖設(shè)計模塊、基礎(chǔ)零件模塊、創(chuàng)成曲面模塊及鈑金設(shè)計模塊。汽車懸架系統(tǒng)的設(shè)計主要包括彈性元件、減振器、導(dǎo)向機構(gòu)的設(shè)計,導(dǎo)向機構(gòu)的設(shè)計決定著系統(tǒng)的運動學(xué)性能,減振器與彈性元件決定著懸架的振動特性。轉(zhuǎn)彎時,車身在 ,車身側(cè)傾角不大于3—4176。該式中,c是沖擊載荷系數(shù),取c=。后懸架為多連桿懸架,其阻尼系數(shù)為: (27)式中 ψ——相對阻尼系數(shù); ms——后懸架簧上質(zhì)量(kg); ——汽車后懸架固有頻率(Hz);a——后懸架下橫臂長度(mm);b——后懸架上橫臂長度(mm)。通常情況下,將壓縮行程時的相對阻尼系數(shù)ψY取得小些,伸張行程時的相對阻尼系數(shù)ψS取得大些。為了緩和這種沖擊力,在汽車行駛系中,除了采用彈性的充氣輪胎以外,還在懸架中裝有彈性元件,使車身(或者車架)和車輪(或者車橋)之間作為彈性聯(lián)系[9]。懸架的動撓度fd是指從滿載經(jīng)平衡位置開始懸架壓縮到結(jié)構(gòu)允許的最大變形時,車輪中心相對車架的垂直位移。 懸架總體設(shè)計懸架設(shè)計可以大致分為結(jié)構(gòu)型式及主要參數(shù)選擇和詳細設(shè)計兩個階段,有時還要反復(fù)交叉進行。(4)分別繪制懸架總裝圖與重要零件圖。此外,汽車的主動和半主動懸架逐漸成為國內(nèi)外懸架技術(shù)研究的熱點,尤其是在懸架參數(shù)的控制方法和控制策略方面,引起了眾多學(xué)者的關(guān)注。國內(nèi)采用多體動力學(xué)研究汽車動力學(xué)的工作雖然起步較晚,但發(fā)展還是較快的[4]。ADAMS/CAR模塊內(nèi)有懸架運動學(xué)動力學(xué)分析的專門模板,可以方便地建立各種結(jié)構(gòu)形式的懸架,迅速得出懸架的多達三十多種參數(shù)的性能曲線。關(guān)鍵詞:懸架,優(yōu)化設(shè)計,運動學(xué)分析,ADAMSthe Design and Simulation of Vehicle Suspension System Based on ADAMSAbstractThe suspension system is the general term for the transmission which connect device between the vehicle frame and axle or wheel. The typical structure of the suspension is the posited of the bedspring, guider as well as vibration damper, the suspension system perform an important function on drivability and harshness. The vehicle suspension system studied in this paper is the former McPherson suspension and multilink suspension, this suspension system is very popular among the BClass car in China. This suspension system is not only has the excellent drivability and handling but also has a strong representation on controlling of costs. There are many unique modules for the kinematics of suspension and dynamics analysis in ADAMS/CAR, you can easily create a variety of structural forms of suspensions and get 30 kinds of the performance curve of the suspension .The parameters is modified and adjusted very easily to detect its impact on various performance parameters.At first, we get the initial design data of the suspension system by the analysis and calculation of the selected models. And then the threedimensional models of the suspension are established with the CATIA, and through the GSA module to check the strength and stiffness of each part. McPherson suspension and multilink suspension model are established in ADAMS / CAR to obtain the results of the kinematic simulation of the suspension motion data. Subsequently, endorsed by the analysis of simulation results, the original design will be modified and optimized to determine a reasonable design data. At last, the suspension system assembly drawings and part drawings are drawn by AutoCAD. Then the suspension design tasks are fished. This paper studies the problem of design and kinematic analysis of the suspension and problem of the car suspension organizations optimization. In this paper, the CAE technology is used to achieving optimization and strength check of suspension kinematics. At last the results show that this method of designing suspension is effective, we fish the design task to design the system of former McPherson suspension and multilink suspension.Key Words: Suspension, Optimization Design, Kinematics Analysis, ADAMS目 錄摘 要 IAbstract II第 1 章 緒論 1 本課題研究意義和背景 1 國內(nèi)外研究現(xiàn)狀概述 1 本課題主要研究內(nèi)容 2第 2 章 懸架系統(tǒng)的設(shè)計 4 懸架的設(shè)計要求 4 懸架總體設(shè)計 4 懸架頻率的選擇 4 懸架的工作行程 5 懸架剛度計算 5 彈性元件的設(shè)計 6 減振器的設(shè)計 6 相對阻尼系數(shù)ψ選擇 6 減振器阻尼系數(shù)設(shè)計 7 減振器最大卸荷力F0的確定 8 減振器工作缸直徑確定 8 導(dǎo)向機構(gòu)設(shè)計 9 本章小結(jié) 10第 3 章 CATIA建模與分析 11 CAD技術(shù)概述及CATIA簡介