【摘要】),(032.75xyyxxyy?????確定的函數(shù)設由方程例),(,xyyx?注意求導在方程兩邊同時對解:.dxdy求隱函數(shù)的導數(shù)及對數(shù)求導法A.隱函數(shù)的導數(shù)02112564????xdxdydxdyy.2521146???yxdxdy整理得,.03275確定的隱函數(shù)是由方程這里????xxyy
2025-07-24 07:11
【摘要】隱函數(shù)及其求導法則我們知道用解析法表示函數(shù),可以有不同的形式.若函數(shù)y可以用含自變量x的算式表示,像y=sinx,y=1+3x等,這樣的函數(shù)叫顯函數(shù).前面我們所遇到的函數(shù)大多都是顯函數(shù).一般地,如果方程F(x,y)=0中,令x在某一區(qū)間內(nèi)任取一值時,相應地總有滿足此方程的y值存在,則我們就
2025-08-13 13:15
【摘要】第18章一、一個方程所確定的隱函數(shù)及其導數(shù)二、方程組所確定的隱函數(shù)組及其導數(shù)§1隱函數(shù)及隱函數(shù)組數(shù)學分析?2?一.隱函數(shù)概念引例1.10xyy???,),1()1,(???????()yfx?,.11xy??方程當
2025-09-25 22:32
【摘要】上頁下頁返回退出JlinInstituteofChemicalTechnology一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)§由方程所確定的函數(shù)的導數(shù)三、相關(guān)變化率上頁下頁返回退出JlinInstituteofChemicalTechnology一、隱函數(shù)的導數(shù)v顯函數(shù)與隱
2025-07-25 13:16
【摘要】一、積分上限函數(shù)及其導數(shù)二、積分上限函數(shù)求導法則三、微積分基本公式第二節(jié)微積分基本定理設在區(qū)間上連續(xù),且,則存在,如積分上限在上任意變動,那么對于每一取定的值,均有唯一的數(shù)與之對應,所以是一個定義在
2025-09-20 17:46
【摘要】第六節(jié)高階導數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導數(shù)?(2)若有高階導數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導數(shù).(2)高階導數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實變函
2025-04-29 05:36
【摘要】定義含有未知函數(shù)的導數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2025-10-10 13:27
【摘要】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導數(shù)?1.原函數(shù)與不定積分的概念?2.積分計算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設f(z)在單連通區(qū)域B內(nèi)解析,則對B中任意曲線C,積分?cfdz與路徑
2025-05-13 18:11
【摘要】導數(shù)公式表一、知識新授:1、常數(shù)函數(shù)與冪函數(shù)的導數(shù)公式1:)(0為常數(shù)CC??幾何意義:常數(shù)函數(shù)在任何一點處的切線平行于x軸。練習2:1x??????????00limlim11xxyfxxfxxfxxxxxxxx???????
2025-08-05 06:14
【摘要】§8.高階導數(shù)與高階微分YunnanUniversity1一、高階導數(shù)及其運算法則,其速度物體運動規(guī)律)(tss?.lim)(0tstsvt???????一階導數(shù)).())(()(lim)(0tststvtvtat?????????????時間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【摘要】導數(shù)與微分1§隱函數(shù)的導數(shù)由參數(shù)方程所確定的函數(shù)的導數(shù)隱函數(shù)的導數(shù)由參數(shù)方程所確定的函數(shù)的導數(shù)小結(jié)思考題作業(yè)一、隱函數(shù)的導數(shù)定義:由方程(,)0Fxy?所確定的函數(shù)()yfx?叫做隱函數(shù)。.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化
2025-07-24 06:05
【摘要】Chapter2(2)偏導數(shù)與高階偏導數(shù)返回一.偏導數(shù)二.高階偏導數(shù)三.偏導數(shù)在經(jīng)濟分析中的應用偏導數(shù)與高階偏導數(shù)目的要求:一.理解多元函數(shù)的偏導數(shù)的概念二.熟練掌握求一階和二階偏導數(shù)的方法重點:一.一階、二階偏導數(shù)計算三.熟練掌握偏導數(shù)
2025-01-14 07:37
【摘要】1高階導數(shù)的定義萊布尼茨(Leibniz)公式小結(jié)思考題作業(yè)§高階導數(shù)第二章導數(shù)與微分幾個基本初等函數(shù)的n階導數(shù)2問題:變速直線運動的加速度.),(tss?設)()(tstv??則瞬時速度為是加速度a???)(ta定義)()(xfxf?的導數(shù)如果函數(shù)
2025-01-17 09:00
【摘要】已知:函數(shù)是可導的奇函數(shù),求證:其導函數(shù)是偶函數(shù)。()fx()fx?????????????000()limlimlim()xxxfxxfxfxxfxxfxxfxxfxxfx????
2025-07-25 20:32
【摘要】河海大學理學院《高等數(shù)學》高等數(shù)學(上)河海大學理學院《高等數(shù)學》第二章導數(shù)與微分高等數(shù)學(上)河海大學理學院《高等數(shù)學》問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10