【摘要】職高數(shù)學《平面解析幾何》第一輪復習曲線與方程一、高考要求:理解曲線與方程的關系,會根據(jù)曲線的特征性質選擇適當?shù)闹苯亲鴺讼登笄€方程,會求曲線的交點.二、知識要點:在平面直角坐標系中,如果曲線C與方程F(x,y)=0之間具有如下關系:(1)曲線C上的點都是方程F(x,
2025-06-07 18:19
【摘要】1廣州新東方優(yōu)能中學教育郭可(GK)Oxy圖2圓錐曲線經典例題:一、選擇題:1.(20xx深圳市第一次調研文科3)雙曲線2214yx??的漸近線方程為()A.1x??B.2y??C.2yx??D.2xy??2.(20xx深圳市第一次
2025-08-15 08:36
【摘要】張啟津張華同學家中有三種酒杯,一種酒杯的軸截面是等腰直角三角形,稱之為直角酒杯(如圖1),另一種酒杯的軸截面近似一條拋物線,杯口寬cm,杯深8cm(如圖2),稱之為拋物線酒杯,還有一種軸截面近似橢圓的橢圓酒杯,測量后得知杯口寬4cm,杯深為9cm,中間最寬處距杯底為5cm(如圖3)。42圖(1)圖(2)
2025-08-16 01:31
【摘要】明思教育明思教育好的習慣比努力更重要會當凌絕頂,一覽眾山小封笑笑同學個性化教學設計年級:高三教師:吳磊科目:數(shù)
2025-01-10 09:02
【摘要】1.直線方程(一)直線的位置關系1.已知集合,,若,則的值為____________________2.若直線與直線平行,則.3.已知m?{-1,0,1},n?{-1,1},若隨機選取m,n,則直線恰好不經過第二象限的概率是.4.已知實數(shù),滿足約束條件則的最大值為.5.已知兩條直線的斜率分別為,設
2025-03-25 01:25
【摘要】解析幾何基礎100題一、選擇題:1.若雙曲線的離心率為,則兩條漸近線的方程為ABCD解答:C易錯原因:審題不認真,混淆雙曲線標準方程中的a和題目中方程的a的意義。2.橢圓的短軸長為2,長軸是短軸的2倍,則橢圓的中心到其準線的距離是ABCD解答:D易錯原因:短軸長誤認為是3.過定點(1,
2025-08-05 16:48
【摘要】新課標資源網老師都說好!學案2兩直線的交點坐標與距離公式新課標資源網老師都說好!返回目錄一、
2025-08-05 10:53
【摘要】解析幾何基礎知識若直線l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,則:(1)直線l1∥l2的充要條件是:k1=k2且b1≠b2(2)直線l1⊥l2的充要條件是:k1·k2=-12.三種距離(1)兩點間的距離平面上的兩點P1(x1,y1),P2(x2,y2)間的距離公式|P1P2|=.特別地,原點(0,0)與任意一點P(x,y)的距離|
2025-06-18 19:34
【摘要】第七章空間解析幾何與向量代數(shù)第一節(jié)空間直角坐標系教學目的:將學生的思維由平面引導到空間,使學生明確學習空間解析幾何的意義和目的。教學重點:教學難點:空間思想的建立教學內容:一、空間直角坐標系1.將數(shù)軸(一維)、平面直角坐標系(二維)進一步推廣建立空間直角坐標系(三維)如圖7-1,其符合右手規(guī)則。即以右手握住軸,當右手的四個手指從正向軸以角
2025-09-25 17:11
【摘要】解析幾何解題方法集錦 俗話說:“知己知彼,才能百戰(zhàn)百勝”,這一策略,同樣可以用于高考復習之中。我們不僅要不斷研究教學大綱、考試說明和教材,而且還必須研究歷年高考試題,從中尋找規(guī)律,這樣才有可能以不變應萬變,才有可能在高考中取得優(yōu)異成績??v觀近幾年的高考解析幾何試題,可以發(fā)現(xiàn)有這樣的規(guī)律:小題靈活,大題穩(wěn)定。一、解決解析幾何問題的幾條原則1.重視“數(shù)形結合”的數(shù)學思想2.注重平面幾
2025-09-25 16:31
【摘要】28NO.《微積分》教案第十章向量代數(shù)與空間解析幾何§空間直角坐標系一、空間點的直角坐標(1)坐標系:公共原點,三條互相垂直的數(shù)軸軸(橫軸),軸(縱軸),軸(豎軸),符合右手規(guī)則。ⅠⅡⅢⅣⅧⅤⅥ點叫做坐標原點,數(shù)軸,,統(tǒng)稱為坐標軸.,,,每一部分稱為一個卦
2025-09-25 14:46
【摘要】專題五解析幾何專題內容反映了作者近年來高考輔導的成功經驗和高考命題研究的最新成果,具有把握高考脈搏準確、信息及時全面、材料新穎、方法靈活、講解透徹、點拔到位、注重分析、注重提高的特點。專題以提高能力和提高成績?yōu)橹笇枷耄环矫?,立足基礎,突出重點主干知識,注重分析,即在分析解題過程中,揭示題目的本質結構、解析難點、點撥疑點、舉一反
2025-08-01 17:19
【摘要】平面解析幾何中的中心對稱和軸對稱龍碧霞一、中心對稱定義:把一個圖形繞某個點旋轉180后能與另一個圖形重合。這兩個圖形關于這個點對稱。這個點叫著對稱中心。性質:關于某個點成中心對稱的兩個圖形。對稱點的連線都經過對稱中心。且被對稱中心平分。一般有三種情況。(1)點關于點對稱。點P(x,y)關于點M(a,b)對稱的點Q的坐標是Q(2a-x,2b-y)。(由中點坐標
2025-07-18 03:35
【摘要】解析幾何單元易錯題練習一.考試內容:橢圓及其標準方程.橢圓的簡單幾何性質.橢圓的參數(shù)方程.雙曲線及其標準方程.雙曲線的簡單幾何性質.拋物線及其標準方程.拋物線的簡單幾何性質.二.考試要求:掌握橢圓的定義、標準方程和橢圓的簡單幾何性質,了解橢圓的參數(shù)方程.掌握雙曲線的定義、標準方程和雙曲線的簡單幾何性質.掌握拋物線的定義、標準
2024-11-02 16:39
【摘要】1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉到和直線重合時所轉的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.(、).2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當直線斜率不存在時,不能用點斜式表示,此時方程為.(2)斜截式:(b
2025-06-22 16:55