【摘要】常微分方程的積分因子求解法內(nèi)容摘要:本文給出了幾類特殊形式的積分因子的求解方法,并推廣到較一般的形式。關(guān)鍵詞:全微分方程,積分因子。一、基本知識對于形如()的微分方程,如果方程的左端恰是,的一個(gè)可微函數(shù)的全微分,即=,則稱()為全微分方程.易知,上述全微分方程的通解為
2025-06-22 20:24
【摘要】第七講積分變換與微分方程?積分變換?拉普拉斯變換拉普拉斯變換函數(shù)函數(shù)名稱意義LaplaceTransform[expr,t,s]對expr的拉普拉斯變換InverseLaplaceTransform[expr,s,t]對expr的拉普拉斯逆變換LaplaceTransform[expr,{t1,t2,…
2024-10-16 20:10
【摘要】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實(shí)常數(shù),)(xf是已知函數(shù)。當(dāng)0)(?xf時(shí),形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-20 04:56
【摘要】Runge-Kutta積分方法所以得到:是精確的,中的平均速度。設(shè)是動點(diǎn)在其中為:,一般的解法可以表示對?????????????????????)(!3)(2)()()()(),(),().,(),(32111nnnnnnnnnnnnnnntYhtYhtYhtYhtYtYYttY
2025-05-05 18:22
【摘要】重提基本結(jié)構(gòu)?一個(gè)假設(shè)→集總模型(電阻電路和動態(tài)電路)?兩類約束→VCR+KCL、KVL?三大基本方法-模型的類比(第三篇)模型的化簡第十二章拉普拉斯變換在電路分析中的應(yīng)用變換與類比變換????變換為
2025-02-09 17:55
【摘要】積分變換第5講1拉普拉斯變換2對于一個(gè)函數(shù)j(t),有可能因?yàn)椴粷M足傅氏變換的條件,因而不存在傅氏變換.但是對之進(jìn)行某些處理后,便可進(jìn)行傅氏變換了。①因此,首先將j(t)乘上u(t),這樣t小于零的部分的函數(shù)值就都等于0了;②而大家知道在各種函數(shù)中,指數(shù)函數(shù)ebt(b0)的上升速
2025-07-24 05:11
【摘要】自動化專業(yè)綜合設(shè)計(jì)報(bào)告自動化專業(yè)綜合設(shè)計(jì)報(bào)告設(shè)計(jì)題目:利用matlab編寫S函數(shù)求解微分方程所在實(shí)驗(yàn)室:自動化系統(tǒng)仿真實(shí)驗(yàn)室指導(dǎo)教師:郭衛(wèi)平
2025-05-16 02:20
【摘要】2022/4/131高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院第7章微分方程問題的計(jì)算機(jī)求解?薛定宇、陳陽泉著《高等應(yīng)用數(shù)學(xué)問題的MATLAB求解》,清華大學(xué)出版社2022?CAI課件開發(fā):劉瑩瑩、薛定宇2022/4/132高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院主要
2025-03-22 04:31
【摘要】第三章微分方程模型一、微分方程知識簡介我們要掌握常微分方程的一些基礎(chǔ)知識,對一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【摘要】常微分方程的高精度求解方法安徽大學(xué)江淮學(xué)院07計(jì)算機(jī)(1)班安徽大學(xué)江淮學(xué)院本科畢業(yè)論文(設(shè)計(jì))題目:常微分方程求解的高階方法學(xué)生姓名:圣近學(xué)號:JB074219院(系):計(jì)算機(jī)科學(xué)與技術(shù)專業(yè):計(jì)算
2025-06-03 12:01
【摘要】有限差分法求解偏微分方程摘要:本文主要使用有限差分法求解計(jì)算力學(xué)中的系統(tǒng)數(shù)學(xué)模型,推導(dǎo)了有限差分法的理論基礎(chǔ),并在此基礎(chǔ)上給出了部分有限差分法求解偏微分方程的算例驗(yàn)證了推導(dǎo)的正確性及操作可行性。關(guān)鍵詞:計(jì)算力學(xué),偏微分方程,有限差分法Abstract:Thisdissertationmainlyfocusesonsolvingthemathematicmodelof
2025-06-19 04:08
【摘要】密級:公開NANCHANGUNIVERSITY學(xué)士學(xué)位論文THESISOFBACHELOR(2011—2015年)題目基于支持向量機(jī)的高速刀具工況監(jiān)測
2025-06-27 20:22
【摘要】山西師范大學(xué)本科畢業(yè)論文(設(shè)計(jì))常微分方程的初等解法與求解技巧姓名張娟院系數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院專業(yè)信息與計(jì)算科學(xué)班級12510201學(xué)號1251020126指導(dǎo)教師王曉鋒答辯日期成績常微分方程的初等解法與求解技巧內(nèi)容摘
2025-06-24 15:00
【摘要】第14章常微分方程的MATLAB求解編者Outline?微分方程的基本概念?幾種常用微分方程類型?高階線性微分方程?一階微分方程初值問題的數(shù)值解?一階微分方程組和高階微分方程的數(shù)值解?邊值問題的數(shù)值解微分方程的基本概念微分方程:一般的,凡表示未知函數(shù)、未知函數(shù)
2025-07-20 07:53
【摘要】 常微分方程求解的高階方法畢業(yè)論文目錄第一章前言 1 1 1 1、通解與特解 1 2. 2 3 4第二章數(shù)值解法公共程序模塊分析 5第三章歐拉(Euler)方法 7Euler方法思想 7Euler方法的誤差估計(jì) 8 8 8 9第四章休恩方法 10休恩方法思想 10 10第五章泰勒
2025-06-25 13:51