【摘要】第2課時圓周角定理推論2與圓內(nèi)接四邊形學習要求1.理解圓周角的概念.2.掌握圓周角定理及其推論.3.理解圓內(nèi)接四邊形的性質(zhì),探究四點不共圓的性質(zhì).課堂學習檢測一、基礎(chǔ)知識填空1._________在圓上,并且角的兩邊都_________的角叫做圓周角.2.在同一圓中,一條弧所對的圓周角等于_____
2024-12-09 11:58
【摘要】謝謝觀看Thankyouforwatching!
2025-06-14 12:04
【摘要】圓周角和圓心角的關(guān)系(1)圓心角、弧、弦、弦心距之間的關(guān)系A(chǔ)BCDOABOA'B'O'在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等圓心角、弧、弦、弦心距之間的關(guān)系A(chǔ)BCDOABOA'B'O'在同圓或等圓中,
2024-11-30 02:41
【摘要】......圓心角和圓周角一、經(jīng)典考題賞析例1.(成都)如圖,內(nèi)接于,AB=BC,,AD為的直徑,AD=6,那么BD=變式題組:1.(河北)如圖,四個邊長為1的小正方形拼成一個大
2025-03-25 00:01
2025-06-14 12:05
【摘要】圓周角和圓心角的關(guān)系第三章圓第1課時圓周角和圓心角的關(guān)系導入新課講授新課當堂練習課堂小結(jié),會敘述并證明圓周角定理.能運用圓周角定理及推論解決簡單的幾何問題.(重點),會推理驗證“圓周角與圓心角的關(guān)系”.(難點)學習目標問題1什么叫圓心角?指出圖中的圓心角?頂點在圓心,角的
2025-06-18 03:06
【摘要】圓心角圓心角、圓周角?它的對稱軸是?垂徑定理的內(nèi)容是?我們是怎樣證明垂徑定理的?圓是軸對稱圖形,對稱軸是直徑所在的直線.垂徑定理是根據(jù)圓的軸對稱性進行證明的.,它會發(fā)生什么變化嗎?圓是中心對稱圖形嗎?它的對稱中心在哪里?它是不會發(fā)生變化的,我們稱之為“圓具有旋轉(zhuǎn)不變性”.圓是中心對稱圖形,它的對稱中心是圓
2024-11-18 19:29
【摘要】足球射門●OBACBACDEDEEODCBA⌒在同圓或等圓中,同弧或等弧所對的圓周角相等圖中還有沒有圓周角相等?CBA直徑所對的圓周角是直角作一條直徑,過直徑的兩個端點作一個圓周角CBA作一個90°
2024-11-30 08:31
【摘要】●OBACDE特征:①角的頂點在圓上.②角的兩邊都與圓相交.1、圓周角定義:頂點在圓上,并且兩邊都和圓相交的角叫圓周角.?●OBACDE溫故知新:圓周角定理?圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半.?老師提示:
2024-12-07 21:28
【摘要】圓周角第2章圓第1課時圓周角定理及其推論1知識目標目標突破第2章圓總結(jié)反思知識目標1.通過對比圓心角的概念,理解圓周角的概念,并能識別圓周角.2.通過分類討論探索圓周角與圓心角的關(guān)系,理解圓周角定理及其推論.第1課時
2025-06-16 18:10
【摘要】圓周角和圓心角的關(guān)系回顧與反思圓周角定理:一條弧所對的圓周角等于它所對的圓心角的一半.推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等推論2:直徑所對的圓周角是直角;90度的圓周角所對的弦是直徑。推論3:圓內(nèi)接四邊形的對角互補。推論4:圓內(nèi)接四
2024-11-26 19:18
【摘要】圓周角(2)九年級數(shù)學(下)第三章圓1、100o的弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓周角成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。3、如圖,在⊙O中,∠BAC=32o,
2024-12-07 15:14
【摘要】圓周角和圓心角的關(guān)系(1)大興學校卿麗萍?.OBC答:頂點在圓心的角叫圓心角..OBC圓心角的度數(shù)和它所對的弧的度數(shù)的關(guān)系我們把頂點在圓心的周角等分成360份時,每一份的圓心角是1°的角。在同圓或等圓中,圓心角的度數(shù)和它所對的弧的度數(shù)相
【摘要】課題:圓周角與圓心角的關(guān)系課型:新授課年級:九年級教學目標:1.掌握圓周角的概念和圓周角定理的證明.2.經(jīng)歷探索圓周角和圓心角的關(guān)系的過程,學會以特殊情況為基礎(chǔ),通過轉(zhuǎn)化來解決一般性問題的方法,滲透分類的數(shù)學思想3.學生自主探索定理的過程中,經(jīng)歷猜想、推理、驗證等環(huán)節(jié),獲得正確學習方式.培養(yǎng)學生的探索精神和解決問題的能
2024-12-08 05:04
【摘要】ABCO,∠BOC是角,∠BAC是角。若∠BOC=80°,∠BAC=。圓心圓周40°,點A,B,C都在⊙O上,若∠ABO=65°,則∠BCA=()A.25
2024-11-18 18:01