【摘要】常見函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2025-11-08 23:31
【摘要】《基本初等函數(shù)的公式及導(dǎo)數(shù)的運(yùn)算法則》學(xué)案第二課時(shí)一、學(xué)習(xí)目標(biāo):、知識(shí)與技能熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;掌握導(dǎo)數(shù)的四則運(yùn)算法則;能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù).、過程與方法根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式熟練的掌握導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù);對于一些常見的函數(shù),會(huì)利用公式求導(dǎo)數(shù)、情感態(tài)度價(jià)值觀引導(dǎo)學(xué)生學(xué)會(huì)分析問題和解
2025-04-17 00:22
【摘要】1第十二章極限與導(dǎo)數(shù)第講2考點(diǎn)搜索●導(dǎo)數(shù)的概念及其幾何意義●幾種常見函數(shù)的導(dǎo)數(shù)公式●導(dǎo)數(shù)的四則運(yùn)算法則,復(fù)合函數(shù)的求導(dǎo)法則高考猜想,求函數(shù)的導(dǎo)數(shù)...3?1.對于函數(shù)y=f(x),記Δy=f(x0+Δx)-f(x0),如果當(dāng)Δ
2025-08-11 14:47
【摘要】高階導(dǎo)數(shù)1、顯函數(shù)的高階導(dǎo)數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導(dǎo)數(shù)一、顯函數(shù)高階導(dǎo)數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-13 06:01
【摘要】2014高考文科數(shù)學(xué):導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)考點(diǎn)梳理1.平均變化率及瞬時(shí)變化率(1)f(x)從x1到x2的平均變化率是:=;(2)f(x)在x=x0處的瞬時(shí)變化率是:=;2.導(dǎo)數(shù)的概念(1)f(x)在x=x0處的導(dǎo)數(shù)就是f(x)在x=x0處的瞬時(shí)變化率,記|或,即=.(2)當(dāng)把上式中的看作變量x時(shí),即為的導(dǎo)函數(shù),簡稱導(dǎo)數(shù),即==3.導(dǎo)數(shù)的幾何意義函數(shù)f
2025-08-10 07:04
【摘要】§導(dǎo)數(shù)的運(yùn)算§常見函數(shù)的導(dǎo)數(shù)目的要求:(1)了解求函數(shù)的導(dǎo)數(shù)的流程圖,會(huì)求函數(shù)的導(dǎo)函數(shù)(2)掌握基本初等函數(shù)的運(yùn)算法則教學(xué)內(nèi)容一.回顧函數(shù)在某點(diǎn)處的導(dǎo)數(shù)、導(dǎo)函數(shù)思考:求函數(shù)導(dǎo)函數(shù)的流程圖新授;求下列函數(shù)的導(dǎo)數(shù)(1)ykx
2024-11-20 00:29
【摘要】??傦?????氘???????耴?耿????┉懌?????????????膁???愿??偠????????﹠履??臣怏?耴?????硘????〩?缿?名?懌??????e籯???????懌???堆菁缿?迺??????耴??????h????蒱???e簨?え?葉?耼??頿?栰?栰???????????????????à恓襢傾?托???蒠氍?
2025-06-29 16:27
【摘要】常見函數(shù)的導(dǎo)數(shù)一、填空題1.與直線2x-y+4=0平行的拋物線y=x2的切線方程是________.2.曲線y=x3在點(diǎn)(1,1)處的切線與x軸、直線x=2所圍成的三角形的面積為________.3.已知f(x)=xα,若f′(-1)=-4,則α的值等于________.4.質(zhì)點(diǎn)的運(yùn)動(dòng)方程是s=t
2024-12-05 03:04
【摘要】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
2025-11-09 08:47
【摘要】1.平均變化率一基本概念問題2高臺(tái)跳水在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系)(2????ttth如果用運(yùn)動(dòng)員在某段時(shí)間內(nèi)的平均速度描述其運(yùn)動(dòng)狀態(tài),那么:v在0≤t≤,在1≤t≤2
2025-10-09 14:03
【摘要】第一篇:2018年北京高三一模導(dǎo)數(shù)文科 2018年一模分類匯編——導(dǎo)數(shù)(文科) (20)(本小題13分) 已知函數(shù)f(x)=exsinx-ax.(Ⅰ)當(dāng)a=0時(shí),求曲線y=f(x)在(0,f(0...
2025-09-29 19:24
【摘要】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()l
2024-11-18 12:13
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時(shí)間掙到2萬元,乙用5個(gè)月時(shí)間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時(shí)間t的函數(shù),則下面兩個(gè)圖象哪一個(gè)可以表示上述函數(shù)?Ot/m
2025-11-08 15:20
【摘要】第二節(jié)基本的導(dǎo)數(shù)公式與運(yùn)算法則一、函數(shù)和、差、積、商的求導(dǎo)法則定理若函數(shù)xxvxu在與)()(處可導(dǎo),則函數(shù))()(xvxuy??在點(diǎn)x處也可導(dǎo),且有??)()()()(xvxuxvxu??????3ln2sin????xxyx例設(shè)y?求,解:?????????)3()(
2025-07-20 20:27
【摘要】選修1-2導(dǎo)數(shù)的四則運(yùn)算法則一、選擇題1.函數(shù)f(x)=1x3+2x+1的導(dǎo)數(shù)是()A.1(x3+2x+1)2B.3x2+2(x3+2x+1)2C.-3x2-2(x3+2x+1)2D.-3x2(x3+2x+1)2[答案]C[解析]f′(x
2024-11-18 15:46