【摘要】第一篇:高等數(shù)學(xué)(上冊(cè))教案10隱函數(shù)的導(dǎo)數(shù)和由參數(shù)方程確定的函數(shù)導(dǎo)數(shù) 第2章導(dǎo)數(shù)與微分 隱函數(shù)的導(dǎo)數(shù)、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù) 【教學(xué)目的】: ;; ; 【教學(xué)重點(diǎn)】: ;; 。...
2024-10-25 04:11
【摘要】第十節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第二章一、隱函數(shù)的導(dǎo)數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy
2025-07-24 06:11
【摘要】復(fù)合函數(shù)求導(dǎo)法則性質(zhì)且點(diǎn)可導(dǎo)在則點(diǎn)可導(dǎo)在而點(diǎn)可導(dǎo)在設(shè),)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫(xiě)成導(dǎo)函數(shù)的形式為簡(jiǎn)寫(xiě)為)()(00x
2025-01-20 05:44
【摘要】1糾正作業(yè)P98T8(8)dlnlnln,.dyyxx?求解:1(lnln)lnlnyxx???(ln)x?ln[ln(ln)]yx?11lnlnl(lnn)xxx???111lnlnlnxxx???P98T11(3)22d(arct
2025-07-24 09:56
【摘要】反函數(shù)、復(fù)合函數(shù)、參數(shù)方程的求導(dǎo)法則數(shù)學(xué)系賀丹導(dǎo)數(shù)的計(jì)算2導(dǎo)數(shù)的計(jì)算3導(dǎo)數(shù)的計(jì)算4導(dǎo)數(shù)的計(jì)算5導(dǎo)數(shù)的計(jì)算即復(fù)合函數(shù)對(duì)自變量的導(dǎo)數(shù)等于函數(shù)對(duì)中間變量的導(dǎo)數(shù)乘以中間變量對(duì)自變量的導(dǎo)數(shù)。6導(dǎo)數(shù)的計(jì)算連鎖法則可以推廣到有限個(gè)中間變量的情形:7
2025-01-19 10:35
【摘要】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對(duì)x求導(dǎo)再解出,y?但應(yīng)注意F對(duì)變?cè)獃求導(dǎo)時(shí),要利用復(fù)合求導(dǎo)法則.2.對(duì)數(shù)求導(dǎo)法當(dāng)函數(shù)式較復(fù)雜(含乘、除、乘方、開(kāi)方、冪指函數(shù)等)時(shí),在方程兩邊取對(duì)數(shù),按隱函數(shù)的求
2025-07-24 04:24
【摘要】復(fù)合函數(shù)的求導(dǎo)法則在學(xué)習(xí)此法則之前我們先來(lái)看一個(gè)例子!例題:求=?解答:由于,故這個(gè)解答正確嗎?這個(gè)解答是錯(cuò)誤的,正確的解答應(yīng)該如下:我們發(fā)生錯(cuò)誤的原因是是對(duì)自變量x求導(dǎo),而不是對(duì)2x求導(dǎo)。下面我們給出復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)規(guī)則
2025-08-13 13:15
【摘要】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標(biāo)面的投影§空間曲線及其方程山東農(nóng)業(yè)大學(xué)高等數(shù)
2025-07-25 04:16
【摘要】第四節(jié)一元復(fù)合函數(shù)求導(dǎo)法則本節(jié)內(nèi)容:一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t二、多元復(fù)合函數(shù)的全微分微分法則機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束多元復(fù)合函數(shù)的求導(dǎo)法則一、多元函數(shù)與一元函數(shù)的復(fù)合(,)zfxy?()()xtvt???????多元
2025-01-19 14:36
【摘要】1第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階導(dǎo)數(shù)§解析函數(shù)的高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)定理二、柯西不等式三、劉維爾定理2第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16
【摘要】二次求導(dǎo)法解高考導(dǎo)數(shù)題胡貴平(甘肅省白銀市第一中學(xué),甘肅白銀730900)導(dǎo)數(shù)是研究函數(shù)性質(zhì)的一種重要工具,用導(dǎo)函數(shù)判斷原函數(shù)的單調(diào)性,如果導(dǎo)函數(shù)大于零,則原函數(shù)為增,導(dǎo)函數(shù)小于零,,對(duì)導(dǎo)函數(shù)或?qū)Ш瘮?shù)中的一部分再構(gòu)造,繼續(xù)求導(dǎo),也就是二次求導(dǎo),不失為一種妙法,下面我們結(jié)合高考題來(lái)看看二次求導(dǎo)數(shù)題中的應(yīng)用.1(2017年高考課標(biāo)Ⅱ卷(文)(21))設(shè)函數(shù).(I)討論的單調(diào)性
2025-04-16 13:00
【摘要】AP微積分之利用微分求導(dǎo)數(shù) AP微積分作為美國(guó)大學(xué)一年級(jí)的數(shù)學(xué)課,大部分高中都會(huì)都接觸微積分,并且我國(guó)高中的數(shù)學(xué)要求高于美國(guó)。所以小編建議學(xué)習(xí)AP微積分建議跟老師學(xué)習(xí),因?yàn)樗吘故且婚T(mén)課程。 ??AP微積分課程的三大基本功:求極限,求導(dǎo)數(shù),求積分。 ??在導(dǎo)數(shù)這一部分,高中階段普遍使用導(dǎo)數(shù)規(guī)則來(lái)求。但是當(dāng)同學(xué)們學(xué)到多元微積分之后,更為有力的工具是全微分,因?yàn)樗且淮问?/span>
2025-08-04 10:38
【摘要】簡(jiǎn)單復(fù)合函數(shù)的求導(dǎo)法則:設(shè)函數(shù)u(x)、v(x)是x的可導(dǎo)函數(shù),則1)(()())''()'()uxvxuxvx???2)(()())''()()()'()uxvxuxvxuxvx???推論:[
2024-11-12 01:24
【摘要】返回第二章一元函數(shù)微分學(xué)微積分二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)求導(dǎo)法則四、初等函數(shù)的求導(dǎo)問(wèn)題一、四則運(yùn)算求導(dǎo)法則第二節(jié)函數(shù)的求導(dǎo)法則返回第二章一元函數(shù)微分學(xué)微積分思路:(構(gòu)造性定義)求導(dǎo)法則其它基本初等函數(shù)求導(dǎo)公式0xcos
2025-01-14 23:12
【摘要】世紀(jì)文都教育科技集團(tuán)股份有限公司2018考研數(shù)學(xué)中反函數(shù)求導(dǎo)問(wèn)題來(lái)源:文都教育春風(fēng)十里,不如考研的你,2018考研備考正在如火如荼地進(jìn)行著,18的考生們的復(fù)習(xí)也漸漸步入正軌!今天文都考研數(shù)學(xué)老師針對(duì)2018考研數(shù)學(xué)中反函數(shù)求導(dǎo)問(wèn)題,為大家進(jìn)行詳細(xì)的解答,幫助2018年的考研學(xué)子把握復(fù)習(xí)備考的命題方向!一、反函數(shù)的導(dǎo)數(shù)
2025-06-07 22:26