【摘要】1、等差數(shù)列{an}前n項(xiàng)和公式:===。等差數(shù)列的前n項(xiàng)之和公式可變形為,若令A(yù)=,B=a1-,則=An2+Bn.在解決等差數(shù)列問題時(shí),如已知,a1,an,d,,n中任意三個(gè),可求其余兩個(gè)。2、等差數(shù)列{an}前n項(xiàng)和的性質(zhì)性質(zhì)1:Sn,S2n-Sn,S3n-S2n,…也在等差數(shù)列,公差為n2d性質(zhì)2:(1)若項(xiàng)數(shù)為偶數(shù)2n,則S2n=n(a1+a2n)=n(an
2025-04-17 07:58
【摘要】復(fù)習(xí)回顧an=a1+(n-1)dan-an-1=d(n∈N*且n≥2)1+2+3+···+100=?高斯,(1777—1855)德國(guó)著名數(shù)學(xué)家。S=100+99+98+3…+2+1問題1S=1+2+3+…+98+99+
2025-05-12 17:18
【摘要】等差數(shù)列前n項(xiàng)和公式的兩個(gè)側(cè)重摘要:本文從在思想方法的角度給出了等差數(shù)列前n項(xiàng)和兩個(gè)公式的側(cè)重點(diǎn)。關(guān)鍵詞:等差數(shù)列思想前n項(xiàng)和公式我們知道,教材就等差數(shù)列前n項(xiàng)和給出了兩個(gè)公式:設(shè)等差數(shù)列??na的前n項(xiàng)和公式和為nS,公差為d,*nN?,則1(1)2nnnSnad???(公式一)1(
2024-12-09 03:42
【摘要】一、教學(xué)目標(biāo):1、利用等差數(shù)列的定義,證明一個(gè)數(shù)列是否為等差數(shù)列2、利用等差數(shù)列的通項(xiàng)公式,會(huì)求一個(gè)數(shù)列的通項(xiàng)二、教學(xué)難點(diǎn)利用定義證明一個(gè)數(shù)列是等差數(shù)列三、學(xué)情分析:數(shù)列是特殊的函數(shù),學(xué)生剛開始學(xué)習(xí)數(shù)列有點(diǎn)不習(xí)慣,故教學(xué)過程稍微慢一點(diǎn),利用定義證明的步驟在教學(xué)過程再細(xì)一點(diǎn)。
2024-11-09 12:24
【摘要】第一篇:等差數(shù)列的前n項(xiàng)和教學(xué)設(shè)計(jì) 等差數(shù)列的前n項(xiàng)和教學(xué)設(shè)計(jì) 羅雪梅 一、教學(xué)內(nèi)容分析 本節(jié)課教學(xué)內(nèi)容是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(5)》(人教A版)中第二章的第三節(jié)“等差數(shù)列的前n...
2024-10-25 11:06
【摘要】全國(guó)中小學(xué)“教學(xué)中的互聯(lián)網(wǎng)搜索”優(yōu)秀教學(xué)案例《等差數(shù)列的前n項(xiàng)和公式》教案設(shè)計(jì)設(shè)計(jì)者:關(guān)璐全單位:廣東佛山市順德區(qū)養(yǎng)正西山學(xué)校聯(lián)系電話:13687416916全國(guó)中小學(xué)“教學(xué)中的互聯(lián)網(wǎng)搜索”優(yōu)秀教學(xué)案例評(píng)選《等差數(shù)列的前n項(xiàng)和公式》教案設(shè)計(jì)
2025-06-10 02:59
【摘要】等差數(shù)列的前n項(xiàng)和一、復(fù)習(xí)引入?等差數(shù)列的概念、通項(xiàng)公式、及有關(guān)性質(zhì)?性質(zhì)1:?性質(zhì)2:若則在許多實(shí)際問題中,我們不僅要知道等差數(shù)列中的項(xiàng)是什么,還要知道它的各項(xiàng)和是多少,今天,我們就來解決等差數(shù)列的求和問題問題1:1+2+3+&
2024-11-09 00:37
【摘要】若數(shù)列的前n項(xiàng)和記為Sn,即Sn=a1+a2+a3+……+an-1+anSn-1∴當(dāng)n≥2時(shí),有an=Sn-Sn-110歲的高斯(德國(guó))的算法:n首項(xiàng)與末項(xiàng)的和:1+100=101n第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101n第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101n………………………………………n
2025-08-15 20:31
【摘要】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2025-08-16 01:26
【摘要】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,…,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫成:…
2024-11-09 00:27
【摘要】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級(jí):高一學(xué)科教師:課時(shí)數(shù):3授課類型等差數(shù)列與通項(xiàng)公式教學(xué)目的掌
2025-06-25 04:00
【摘要】????????100321:引例一德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2025-08-16 00:55
【摘要】第一篇:高三等差數(shù)列及前n項(xiàng)和導(dǎo)學(xué)案 《等差數(shù)列及其前n項(xiàng)和》導(dǎo)學(xué)案 班級(jí)_______課時(shí)時(shí)間________ 學(xué)習(xí)目標(biāo) 1.理解等差數(shù)列的概念,會(huì)用定義證明一個(gè)數(shù)列是等差數(shù)列;2.能利用等...
2024-10-25 12:31
【摘要】等差數(shù)列求和公式:}{項(xiàng)和為的前數(shù)列nannsnnaaaas?????...321???1nnssna13211???????nnaaaas...10歲的高斯(德國(guó))的算法:?首項(xiàng)與末項(xiàng)的和:1+100=101?第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101?第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101?
2025-08-16 01:37
【摘要】等差數(shù)列的前n項(xiàng)和第二課時(shí)等差數(shù)列前n項(xiàng)和的應(yīng)用課前預(yù)習(xí)·巧設(shè)計(jì)名師課堂·一點(diǎn)通創(chuàng)新演練·大沖關(guān)第二章數(shù)列考點(diǎn)一考點(diǎn)二課堂強(qiáng)化課下檢測(cè)考點(diǎn)三
2025-01-06 16:35