freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理說課稿,勾股定理說課稿[范文模版]-免費閱讀

2025-11-03 18:26 上一頁面

下一頁面
  

【正文】 對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。二、教學與學法分析教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。我是臨沂市蒼山縣實驗中學的**。課堂教學中動靜結(jié)合,以免引起學生的疲勞。板書課題,出示學習目標。教學重點:勾股定理的證明和應用。探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的探索和研究,得出結(jié)論。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。三、教學過程設計(一)數(shù)學史導入以畢達哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。(二)根據(jù)課程標準,本課的教學目標是:能說出勾股定理的內(nèi)容。然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。整個探索過程,讓學生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。感性認識未必是正確的,推理驗證證實我們的猜想。突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。第二步 追溯歷史 解密真相勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。(二)重點與難點為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。2米的薄木板是否能從門框內(nèi)通過?為什么?四。92。例2。 二。說教法和學法1。知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。(五)布置作業(yè)。本節(jié)我們就來學習一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。探索定理采用了面積法,引導學生利用實驗由特殊到一般的數(shù)學思想對直角三角形三邊關系進行了研究,并得出了結(jié)論。練兵之際這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。六、教學流程設計創(chuàng)設情境,引入新課本節(jié)課開始利用多媒體介紹了在北京召開的20xx年 國際數(shù)學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)。介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數(shù)學激情及愛國情感。以上是我對本節(jié)課的理解,還望各位老師指正。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=,獨立完成,教師提醒書寫格式。如果直接將問題拋給學生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點,我先讓學生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現(xiàn)了什么情況?并請學生簡單說明理由。二、教法學法分析八年級學生的特點是思維比較活躍,喜歡發(fā)表自己的見解,善于進行小組合作學習,所以我將采用啟發(fā)教學與誘導教學相結(jié)合的方法,老師為主導,學生為主體,充分調(diào)動學生的學習積極性,讓學生動手操作,動腦思考,動口表達,積極參與到本節(jié)課的教學過程中來,在鍛煉學生思考、觀察、實踐能力的同時,使其科學文化修養(yǎng)與思想道德修養(yǎng)進一步提升。《勾股定理》說課稿5尊敬的各位領導、各位老師,大家好:我叫李朝紅,是第十四中學的一名教師。在變式訓練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。接下來就是利用這個數(shù)學模型,從理論上證明這個定理。重點:勾股定理逆定理的應用難點:勾股定理逆定理的證明關鍵:輔助線的添法探索二、教學過程:本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構(gòu)的目的?!豆垂啥ɡ怼氛f課稿4說課,就是教師備課之后講課之前(或者在講課之后)把教材、教法、學法、授課程序等方面的思路、教學設計、|板書設計及其依據(jù)面對面地對同行(同學科教師)或其他聽眾作全面講述的一項教研活動或交流活動。思考:那條路線最短?②如圖,將圓柱側(cè)面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎?③螞蟻從A點出發(fā),想吃到C點處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?思路點撥:引導學生在自制的圓柱側(cè)面上尋找最短路線;提醒學生將圓柱側(cè)面展開成長方形,引導學生觀察分析發(fā)現(xiàn)“兩點之間的所有線中,線段最短”。教學重點:勾股定理的應用。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系?!掘炞C】先后三次驗證“勾股定理”這一結(jié)論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。AC=BC時,則AC2+BC2=AB2。針對初二年級學生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。新知運用:①舉出勾股定理在生活中的運用。教學難點:分割,補全法證面積相等,探索勾股定理。因此他的教育教學價值就具體體現(xiàn)在如下三維目標中:知識與技能:經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。通過小結(jié),培養(yǎng)學生的歸納概括能力。而畢達哥拉斯證明勾股定理比我們晚了500多年。相信同學在老師的指導和互相幫助之下,可以很快的拼出趙爽弦圖和畢達哥拉斯用來證明勾股定理的圖形。同學容易受前面知識的影響,想去構(gòu)造以a、b、c三邊為邊長的正方形,從而驗證正方形A的面積與正方形B的面積之和等于正方形C的面積。當同學順利的計算出六個正方形的面積之后,可以發(fā)現(xiàn),正方形A、B的面積之和等于正方形C的面積。問題一:在圖中你能發(fā)現(xiàn)那些基本圖形?同學可以發(fā)現(xiàn)等腰直角三角形。第三,說教學過程。過程與方法:讓學生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學過程,并從中體會數(shù)形結(jié)合及從特殊到一般的數(shù)學思想。第二篇:勾股定理說課稿說課稿教材: 九年義務教育三年制新教材(人教版)課題: 八年級(下)167?;镜慕虒W程序是“創(chuàng)設情景動手操作歸納驗證問題解決課堂小結(jié)布置作業(yè)”六個方面。(三)教學重點、難點:【教學重點】勾股定理的證明與運用【教學難點】用面積法等方法證明勾股定理【難點成因】對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結(jié)論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。勾股定理是學生在已經(jīng)掌握了直角三角形有關性質(zhì)的基礎上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力?!就黄拼胧浚孩眲?chuàng)設情景,激發(fā)思維:創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程?!緦W法分析】新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”,使學生真正成為學習的主人?!豆垂啥ɡ怼贰豆垂啥ɡ怼氛f課稿尊敬的各位評委、老師:上午好!今天我說課的課題是《勾股定理》,我將從說教材,說教學任務,說教學過程及說遠程教育資源在教學中的應用四個方面說課。情感態(tài)度與價值觀:介紹我國古代在研究勾股定理方面取得的偉大成就,激發(fā)學生愛國情感。整個教學過程打算分為以下八個活動。問題二:與等腰直角三角形相鄰的正方形面積之間有怎樣的關系?同學通過直接數(shù)等腰直角三角形的個數(shù)可以得出A的面積加上B的面積等于C的222面積。從而得到a+b=c。當同學經(jīng)過一段時間的思考之后發(fā)現(xiàn),這種證明存在一定的難度。通過這些實際操作,學生能夠進一步加深對數(shù)形結(jié)合的理解,拼圖也會產(chǎn)生感性認識,也為論證勾股定理做好準備,給學生充分的時間和空間參與到數(shù)學活動中來,并發(fā)揮他們的主觀能動性,可以進一步提高學生的學習興趣。所以在我國被稱之為勾股定理,而在我國召開的國際數(shù)學家大會也采用了趙爽弦圖來作為大會的會徽。最后活動八,布置作業(yè)。理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。二..教法學法分析:要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:先從學生們熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學課堂是學生們自己的課堂。(老師講解勾股定理在生活中的運用)②在直角三角形中,已知∠ B=90176。(二)三維教學目標:1.【知識與能力目標】⒈理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;⒉通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。(四)問題解決⒈讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。以上內(nèi)容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!《勾股定理》說課稿3一、說教材本課時是華師大版八年級(上)數(shù)學第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎上對勾股定理的應用之一。教學難點:勾股定理的正確使用。 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。以下是小編整理的初中數(shù)學《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。(一)、復習回顧:復習回顧與勾股定理有關的內(nèi)容,建立新舊知識之間的聯(lián)系。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。(五)、歸納小結(jié),納入知識體系本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。我今天說課的題目《勾股定理的逆定理》,選自人教課標實驗版教科書數(shù)學八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學法、教學過程、教學反思四個方面進行闡述。教法學法分析完畢,我再來分析一下教學過程,這是我本次說課的重點。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數(shù),我們稱為勾股數(shù)?!豆垂啥ɡ怼氛f課稿6一、教材分析教材所處的地位與作用“探索勾股定理”是人教版八年級《數(shù)學》下冊內(nèi)容。三、教學重難點本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系?!昂玫拈_始是成功的一半”,在 課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數(shù)學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質(zhì)的形成有重要作用,對學生終身發(fā)展也有很大作用。(二)引導學生,探究新知①初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關系,創(chuàng)設感知情境,提出問題,現(xiàn)在請同學觀察,看看有什么發(fā)現(xiàn)?(學案出示)使問題更形象、具體。拓展新知讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流。2。以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。新授課例1。(課本P58圖14。5可見卡車能順利通過 。小結(jié)直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質(zhì),學透勾股定理的具體應用,那樣就能很輕松的解決現(xiàn)實生活中的許多問題,達到事倍功半的效果。限于
點擊復制文檔內(nèi)容
研究報告相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1