【摘要】§變化率問題教學目標1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點處附近的平均變化率教學重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學難點:平均變化率的概念.教學過程:一.創(chuàng)設情景[為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著
2024-12-08 01:49
【摘要】:)(00xxkyy???0已知函數(shù)y=f(x)在點x=x及其附近有定義00?叫做函數(shù)y=f(x)在x到x+x之間的平均變化率.00()()x0,fxxfxyxx?????????當時比值'000)()()lim
2024-11-17 05:49
【摘要】導數(shù)公式【教學目標】能根據(jù)導數(shù)的定義,求函數(shù)cy?,xy?,2xy?,xy1?,xy?的導數(shù)。能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)。【教學重點】常數(shù)函數(shù)、冪函數(shù)的導數(shù)【教學難點】利用公式求導一、課前預習(閱讀教材14--17頁,填寫知識點)__
2024-11-19 10:27
【摘要】簡單復合函數(shù)的導數(shù)課時目標能求形如f(ax+b)形式的復合函數(shù)的導數(shù).[來源:Z|xx|k.Com]復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復合函數(shù),記作y=f(g(x)).
2024-12-05 09:29
【摘要】2020/12/24的應用導數(shù)公式表及數(shù)學軟件2020/12/24.,表導數(shù)公式等函數(shù)的的基本初使用下面可以直接今后我們?yōu)榱朔奖?020/12/24式基本初等函數(shù)的導數(shù)公????;xf,cxf.'01??則若??????;nxxf,Nnxxf.n'n12?????則
【摘要】一:溫故知新處的導數(shù):在函數(shù)0)(.1xxxfy??處的導數(shù):在函數(shù)0)(.1xxxfy??xxfxxfxyxf????????)()(limlim)('0000??x0??x一:溫故知新的導函數(shù):函數(shù))(.2xfy?的導函數(shù):函數(shù))(.2xfy?xxfxxfyxfx?????
2025-03-12 14:54
【摘要】320已知函數(shù)()=,(0,1],,若()在(0,1]上是增函數(shù),求的取值范圍練。習2fxax-xxafxa??3[)2,??325例1:求參數(shù)的范圍若函數(shù)f(x)在(-,+)上單調(diào)遞增,求a的取值范圍
2024-11-18 15:25
【摘要】海南華僑中學張紅參加??谑星嗄杲處焹?yōu)質(zhì)課比賽教學實錄(根據(jù)視頻整理海南華僑中學數(shù)學組張紅)教學課題:導數(shù)的幾何意義幻燈片:教學開始:(正式鈴聲):教師:上課,學生(全體起立)(齊):老師好!教師:同學們好!請坐下.引入開場白:(教師)上一節(jié)課我們學習了導數(shù)的概念,知道導數(shù)是對變化率的一種“度量”.今天我們要學習導數(shù)另
2024-12-02 10:00
【摘要】人民教育出版社普通高中課程標準實驗教科書選修2-2第一章導數(shù)DAOSHU五教學過程微積分的創(chuàng)立是數(shù)學發(fā)展中的里程碑,導數(shù)是微積分的核心概念之一.在本節(jié)課中學生將經(jīng)歷由平均變化率到瞬時變化率刻畫現(xiàn)實問題的過程,理解導數(shù)的含義,體會導數(shù)的內(nèi)涵,感受導數(shù)在解決數(shù)學問題
2024-11-17 20:07
【摘要】§3計算導數(shù)雙基達標?限時20分鐘?1.曲線y=xn在x=2處的導數(shù)為12,則n等于().A.1B.2C.3D.4解析∵y′=n·xn-1,∴y′|x=2=n·2n-1=12.∴n=3.答案C2.若函數(shù)f(x)=3
2024-12-03 00:14
【摘要】湖南省邵陽市隆回二中選修2-2學案導數(shù)及其應用:基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則(1)導學案【學習目標】1.熟練掌握基本初等函數(shù)的導數(shù)公式;2.掌握導數(shù)的四則運算法則;3.能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù).?!咀灾鲗W習】(認真自學課本P14-15)一、復習與思考:
2024-12-05 06:26
【摘要】第5課時導數(shù)的綜合應用、極值、最值等..函數(shù)與導數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)思想貫穿中學數(shù)學全過程.導數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機地聯(lián)系在一起,在能力立意的命題思想指導下,與導數(shù)相關的問題已成為高考數(shù)學命題的必考考點之一.函數(shù)與方
2024-12-05 06:30
【摘要】復數(shù)的概念一、學法建議:1、本節(jié)內(nèi)容概念較多,在理解的基礎上要牢記實數(shù)、虛數(shù)、純虛數(shù)與復數(shù)的關系,特別要明確:實數(shù)也是復數(shù),要把打復數(shù)與虛數(shù)加以區(qū)別,對于純虛數(shù)bi(b≠0,不要只記形式,要注意b≠0,如0i=0是實數(shù),而不是純虛數(shù),初學復數(shù)時最易在這里出錯。2、復數(shù)z=a+bi(a、是由它實部和虛
2024-11-19 20:23
【摘要】§函數(shù)的極值與導數(shù)(2課時)教學目標:、極小值的概念;、極小值的方法來求函數(shù)的極值;;教學重點:極大、極小值的概念和判別方法,以及求可導函數(shù)的極值的步驟.教學難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟.教學過程:一.創(chuàng)設情景觀察圖,我們發(fā)現(xiàn),ta?時,高臺跳水運動員距水面高度最
2024-11-19 23:26
【摘要】§導數(shù)的運算常見函數(shù)的導數(shù)課時目標,進一步理解運用概念求導數(shù)的方法.見函數(shù)的導數(shù)公式..1.幾個常用函數(shù)的導數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′