【摘要】2020年中考數(shù)學(xué)專題復(fù)習(xí)第十八講等腰三角形與直角三角形【基礎(chǔ)知識(shí)回顧】一、等腰三角形1、定義:有兩邊的三角形叫做等腰三角形,其中的三角形叫做等邊三角形2、等腰三角形的性質(zhì):⑴等腰三角形的兩腰等腰三角形的兩個(gè)底角簡(jiǎn)稱為⑵等腰三角形的頂角
2025-08-10 21:51
【摘要】第15講等腰三角形與直角三角形考點(diǎn)等腰三角形的性質(zhì)及判定6年1考相等等邊對(duì)等角三線合一一條邊等角對(duì)等邊角性質(zhì)等腰三角形的兩腰①(定義賦予)等腰三角形的兩個(gè)底角相等,即“②”等腰三角形頂角的平分線、底邊上的中線、底
2025-06-12 02:17
【摘要】等腰三角形(三)◆隨堂檢測(cè)1一個(gè)等邊三角形的角平分線、高、中線的總條數(shù)為_(kāi)________.,已知線段AB,分別以AB、為圓心,大于12AB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)C、Q,連結(jié)CQ與AB相交于點(diǎn)D,連結(jié)AC,BC.那么:(1)∠ADC?________度;(2)當(dāng)線段4
2024-11-13 01:46
【摘要】結(jié)合近幾年中考試題分析,對(duì)等腰三角形的內(nèi)容考查主要有以下特點(diǎn):、判定及三角形全等、線段垂直平分線進(jìn)行綜合考查,題型以選擇、填空或解答題為主;等邊三角形的性質(zhì)的綜合運(yùn)用.1.(2022肇慶)如圖:在△ABC中,AB=AC,∠A=40°,BD為∠ABC
2025-07-26 00:42
【摘要】第一章三角形的證明1.等腰三角形(三)湖北宜昌市長(zhǎng)江中學(xué)李玉平一、學(xué)生知識(shí)狀況分析本節(jié)課是等腰三角形的第三課時(shí),通過(guò)前面兩課時(shí)的學(xué)習(xí),學(xué)生已經(jīng)掌握了等腰三角形的相關(guān)性質(zhì),并知道了用綜合法證明命題的基本要求和步驟。為學(xué)習(xí)等腰三角形的判定定理奠定了知識(shí)和方法的基礎(chǔ)。二、教學(xué)任務(wù)分析本節(jié)課的主要任務(wù)是探索等
2024-11-24 17:07
【摘要】第15講等腰三角形與直角三角形考點(diǎn)等腰三角形的性質(zhì)及判定6年1考相等等邊對(duì)等角三線合一一條邊等角對(duì)等邊角性質(zhì)等腰三角形的兩腰①(定義賦予)等腰三角形的兩個(gè)底角相等,即“②”等腰三角形頂角的平分線、底邊上
2025-06-17 04:56
【摘要】等腰三角形的判定臨海中學(xué)初二備課組等腰三角形的判定學(xué)習(xí)目標(biāo)自學(xué)指導(dǎo)討論練習(xí)課堂作業(yè)我們?cè)谏弦还?jié)學(xué)習(xí)了等腰三角形的性質(zhì)。現(xiàn)在你能回答我一些問(wèn)題嗎?一、復(fù)習(xí):1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個(gè)底角相等。(可以簡(jiǎn)稱:等邊對(duì)等角)2、這個(gè)定理
2025-08-01 18:01
【摘要】等腰三角形的性質(zhì)數(shù)科院李紫20222202225ABC⑴由“兩邊相等”得到“等腰三角形”.∵△ABC中,AB=AC,∴△ABC是等腰三角形.⑵由“等腰三角形”得到“兩邊相等”.如圖,∵△ABC是等腰三角
2025-08-01 13:41
【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡(jiǎn)稱“在同一個(gè)三角形中,等邊對(duì)等角”;、底邊上的中線和底邊上的高互相重合。簡(jiǎn)稱“等腰三角形三線合一”,對(duì)稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個(gè)三角形
【摘要】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問(wèn)題1:小區(qū)內(nèi)有一個(gè)三角形小花壇,現(xiàn)在想把它分割成兩個(gè)三角形,使之可以種上不同的花。你會(huì)怎么分?ABCP問(wèn)題2:如果要分割成兩個(gè)等腰三角形呢?原三角形的角度不知道。無(wú)法分!從頂點(diǎn)引一條線段問(wèn)題3:如果花壇
2024-11-24 15:15
【摘要】ACB腰腰底邊頂角底角底角一起回憶復(fù)習(xí)概念在△ABC中(1)∵AB=AC,AD⊥BC,∴∠___=∠___,____=____;(2)∵AB=AC,AD是中線,∴∠_=∠_,____⊥____;(3)∵AB=AC,AD是角平分線,∴____⊥____,____=
2025-08-15 20:34
【摘要】等腰三角形的性質(zhì)定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質(zhì)定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質(zhì)定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個(gè)三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
2024-11-24 13:18
【摘要】教材同步復(fù)習(xí)第一部分第四章三角形課時(shí)16等腰三角形與直角三角形知識(shí)要點(diǎn)·歸納知識(shí)點(diǎn)一等腰三角形的性質(zhì)與判定概念有兩條邊相等的三角形叫做等腰三角形性質(zhì)(1)兩底角相等,即∠B=∠C;(2)兩腰相等,即AB=AC;(3)是軸對(duì)稱圖形,有一條對(duì)稱軸,即AD;(4
2025-06-12 03:06
【摘要】等腰三角形林奕娜一、教材分析《等腰三角形》是人教版義務(wù)教育教科書(shū)《數(shù)學(xué)》八年級(jí)上冊(cè)第十三章《軸對(duì)稱》第三小節(jié)第一課時(shí)的內(nèi)容。等腰三角形是一種特殊的三角形,它除了具有一般三角形的所有性質(zhì)外,還有許多特殊的性質(zhì),因此它比一般三角形應(yīng)用更廣泛。而等腰三角形的特殊性質(zhì)又與它是軸對(duì)稱圖形有關(guān)。另外,等腰三角形的性質(zhì)又是研究等邊三角形、證明角相等、線段相等及直線垂直的重要依據(jù)
2025-04-17 08:21
【摘要】課時(shí)18三角形與等腰三角形第四單元三角形課前考點(diǎn)過(guò)關(guān)中考對(duì)接命題點(diǎn)一三角形的內(nèi)角和不外角1.[2022·株洲]如圖18-1,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,則∠BAD的度數(shù)是()A.145°B.150°C.155°D.160
2025-06-12 15:45