【摘要】數(shù)列通項公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習若數(shù)列的遞推公式為,則求這個數(shù)列的通項公式?! 。ǎ┒?、公式法已知數(shù)列的前項和與的關系,求數(shù)列的通項可用公式求解.例2.①
2025-06-26 05:29
【摘要】專題數(shù)列通項公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式解:設數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點評:利用定義法求數(shù)列通項時要注意不用錯定義,設法求出首項與公差(公
2025-03-25 02:53
【摘要】等比數(shù)列的通項公式(2)陽光國際學校高中部數(shù)學組復習一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1q0時,數(shù)列各項同號q0時,數(shù)列各項正負相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-12 16:41
【摘要】教師姓名學科數(shù)學上課時間講義序號學生姓名年級組長簽字日期課題名稱常見數(shù)列通項公式及求和公式求法教學目標1、掌握幾種常見數(shù)列通項公式求法2、掌握幾種常見數(shù)列求和公式求法教學重、難點
2025-07-23 16:02
【摘要】等比數(shù)列的通項公式(教案)一、教學目標1、掌握等比數(shù)列的通項公式,并能夠用公式解決一些相關問題。2、掌握由等比數(shù)列的通項公式推導出的相關結論。二、教學重點、難點各種結論的推導、理解、應用。三、教學過程1、導入復習等比數(shù)列的定義:通項公式:用歸納猜測的方法得到,用累積法證明2、新知探索例1在等比數(shù)列中,(1)
2025-04-17 08:21
【摘要】“數(shù)列通項公式及數(shù)列求和”課例一、設計理念首先通過解剖導學案,讓學生經(jīng)歷知識網(wǎng)絡的自主構建,然后在匯報和例題解法展示活動中進行知識網(wǎng)絡的完善和思想、方法的總結提升,以導學案為載體、立足過程、增強解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學的一個重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
2025-04-17 01:43
【摘要】
2024-11-12 18:09
【摘要】用不動點法求數(shù)列通項的一點幾何意義猜想孟劍衛(wèi)(江蘇省東海高級中學,江蘇東海)定義;方程f(x)=x的根稱為函數(shù)f(x)的不動點。利用遞推數(shù)列f(x)的不動點,可將某些遞推關系an=£(an-1)所確定的數(shù)列化為等比數(shù)列或較易求通項的數(shù)列,這種方法叫不動點法。對于這個方法有幾個重要定理,若只從代數(shù)角度理解,恐怕對許多中學生來說是有難度的。下面筆者對這幾個定理予以幾何解釋:定
2025-06-22 19:24
【摘要】......1、公式法:等差數(shù)列、等比數(shù)列的通項公式的求法:若在已知數(shù)列中存在:(常數(shù))或的關系,可采用求等差、等比數(shù)列的通項公式的求法,確定數(shù)列的通項。2、非等差、等比數(shù)列的通項公式的求法。(1)觀察法:通過觀察數(shù)列中的
2025-06-25 02:18
【摘要】等比數(shù)列的通項公式復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2024-11-11 08:58
【摘要】......求數(shù)列通項公式一、公式法 類型1解法:把原遞推公式轉化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項公式。 解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差
【摘要】等差數(shù)列的通項公式復習數(shù)列的有關概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2024-11-11 21:08
【摘要】等比數(shù)列的定義)2(?n)1(?nqaann??12.qaann??1或1.qaaaaaaaaaann????????145342312如果等比數(shù)列{an}的首項是a1,公比是q,則11??
2025-07-25 15:34
【摘要】等比、差數(shù)列前n項和的性質(zhì){an}為等比數(shù)列,Sn為其前n項和,則SK,S2K-SK,S3K-S2K,···仍構成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-04-30 18:12
【摘要】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復雜,顯示出很大的反差。使得在學習數(shù)列時感到很困難。同時,數(shù)列題目種類繁多,很難歸類。為了便于研究數(shù)列問題,找出其中某些常見數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見的數(shù)列通項公式的求法作以下歸類。.一、作差求和法m例1在數(shù)列{}中,,,求通項公式.解:原遞推式可化為:則,……,逐項相加
2025-08-23 21:37