【摘要】2.2直接證明與間接證明2.綜合法與分析法理解綜合法和分析法的概念及它們的區(qū)別,能熟練地運用綜合法、分析法證題.本節(jié)重點:綜合法與分析法的概念及用分析法與綜合法證題的過程、特點.本節(jié)難點:用綜合法與分析法證明命題.綜合法和分析法綜合法分析法定義利用和某些
2024-11-18 08:10
【摘要】3.復數(shù)代數(shù)形式的乘除運算掌握復數(shù)的乘法、除法的運算法則并能熟練準確地運用法則解決相關(guān)的問題.本節(jié)重點:復數(shù)代數(shù)形式的乘除運算.本節(jié)難點:復數(shù)除法.1.復數(shù)乘法運算法則設z1=a+bi,z2=c+di(a、b、c、d∈R),則z1z2=(a+bi)(c+di)=.2
2024-11-17 23:19
【摘要】復習:合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
2024-11-18 15:24
【摘要】導數(shù)及其應用高考題第1題.設函數(shù)2()ln(23)fxxx???(Ⅰ)討論()fx的單調(diào)性;(Ⅱ)求()fx在區(qū)間3144???????,的最大值和最小值.答案:解:()fx的定義域為32?????????,.(Ⅰ)224622(21)(1)()223
2024-12-02 10:13
【摘要】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-18 15:23
【摘要】反證法一.反證法證明命題“設p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設矛盾,因此假設p不是偶數(shù)不成立,從而證明
2024-11-18 01:21
【摘要】1.7定積分的簡單應用利用定積分的思想方法解決一些簡單曲邊圖形的面積、變速直線運動的路程、變力作功等問題.本節(jié)重點:應用定積分的思想方法,解決一些簡單的諸如求曲邊梯形面積、變速直線運動的路程、變力作功等實際問題.本節(jié)難點:把實際問題抽象為定積分的數(shù)學模型.1.利用定
2024-11-17 23:15
【摘要】①復數(shù)的分類a+bi?????實數(shù)(b=0)虛數(shù)(b≠0)?????純虛數(shù)(a=0)非純虛數(shù)(a≠0)②處理有關(guān)復數(shù)概念的問題,首先可找準復數(shù)的實部與虛部(若復數(shù)為非標準代數(shù)形式,則應通過代數(shù)運算化為代數(shù)形式)
2024-11-17 23:14
【摘要】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個
【摘要】演繹推理演繹推理課時安排:兩課時課型:新授課教學目標:一、知識與技能:了解演繹推理的含義,能利用“三段論”進行簡單的推理。二、過程與方法:結(jié)合具體實例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價值觀:
【摘要】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實能得到怎樣的結(jié)論?2、在平面內(nèi),若a⊥c,b⊥c,則a//b.類比地推廣到空間,你會得到什么結(jié)論?并判斷正誤。正確錯誤(可能相交)
【摘要】高中蘇教選修(2-2)數(shù)學歸納法水平測試一、選擇題1.用數(shù)學歸納法證明“221nn??對于0nn≥的自然數(shù)n都成立”時,第一步證明中的起始值0n應?。ǎ〢.2B.3C.5D.6答案:C2.用數(shù)學歸納法證明不等式1111(1)2321nnnn???????
2024-12-05 03:04
【摘要】1.4生活中的優(yōu)化問題舉例能利用導數(shù)知識解決實際生活中的最優(yōu)化問題.本節(jié)重點:利用導數(shù)知識解決實際中的最優(yōu)化問題.本節(jié)難點:將實際問題轉(zhuǎn)化為數(shù)學問題,建立函數(shù)模型.1.解決實際應用問題時,要把問題中所涉及的幾個變量轉(zhuǎn)化成函數(shù)關(guān)系式,這需要通過分析、聯(lián)想、抽象和轉(zhuǎn)
【摘要】1.導數(shù)的概念對于函數(shù)y=f(x),如果自變量x在x0處有增量Δx,那么函數(shù)y相應地有增量Δy=f(x0+Δx)-f(x0),比值ΔyΔx就叫做函數(shù)y=f(x)從x0到x0+Δx的平均變化率,即ΔyΔx=
2024-11-17 19:03
【摘要】1.了解復合函數(shù)的定義,并能寫出簡單函數(shù)的復合過程;2.掌握復合函數(shù)的求導方法,并運用求導方法求簡單的復合函數(shù)的導數(shù).本節(jié)重點:①導數(shù)公式和導數(shù)運算法則的應用.②復合函數(shù)的導數(shù).本節(jié)難點:復合函數(shù)的求導方法.復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和
2024-11-17 17:04